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Presentation Notes
I am very happy to have this opportunity to present my research and interest here today. It’s about Unveiling Nature's Response: Examining Ecological Dynamics in the Tropical Forest in face of Global Change



How important are forests for climate change? Forest - climate interactions

cological
Atmospheric
Hydrologica
Dynamics:
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Left photo credit @ Enrico Pescantini Right photo credit @ NASA The Blue Marble 2012



Presenter
Presentation Notes
How important are forests for climate change? There are siginicant mutual interactions between forest and climate. For example, forest have impacts on atmosphere through:.
In return, atmosphere also affects the forest function through…. Critically needed is to understand the ecological atmospheric hydrological dynamics.


Key area to study photosynthesis: tropical forests
sis is both important, and uncertain
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Presenter
Presentation Notes
Before I answer these three questions, I would like to ask you: what’s your first impression on Amazon forests? You might think of it’s biodivisity, complex canopy structures with multi layers, act as a very important carbon sink in global cycling and its widespread river systems.  Right now, researches are concerned about the future of Amazon forest under the global warming. The forests faces significant threats of extreme weather events, increased temperature, wild fires and human-induced deforestation and degradation.
        The question is if the Amazon forest will pass a tipping point towards collapse or keep resilient under climate change?

 Because of its complexity, there is large uncertainty to quantify the photosynthesis for Amazon forest as well as quantify its resilience.
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% Classical biogeography is about the distribution
of species in space and time.

Here is not of species, but of an ecosystem
function (photosynthesis).

= # Mg | vinan
|
r

[ Pkt | Sl by o TV n - 1 o » e i,
pis it e Qe
; : = 3
o i 5 b ¢ Py P
. S 07

s i
| e
g rems

[Y ot
[ i

¥ T chmn

e |
sy Pk b
e [ P

Humboldt’s legacy. Nat Ecol Evol 3, 1265-1266 (2019). Alexander von Humboldt’s view of Mount Chimborazo, Ecuado
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Presentation Notes
To explore and quantify such uncertainty, my main methodology is the biological scaling, using a key example of biogeography. , proposed by Alexander von Humbldt, who here with this figure depicted what he called ‘Naturgemälde” or “painting of nature” It visualized different vegetation zones on the cross section of a mountain, relating them to altitude, temperature and humidity at different scales



Previous results (2005 drought)

26 OCTOBER 2007 VOL 318 SCIENCE

Amazon Forests Green-Up
During 2005 Drought (2007

Scott R. Saleska,"*t Kamel Didan,* Alfredo R. Huete,® Humberto R. da Rocha®

REMOTE

“intact Amazon forests may be more
resilient than most ecosystem
models assume, at least in response
to short-term climate anomalies.”

SENSING
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> Reported increase in tree mortality during “intact Amazon forests may be more
the period that included the 2005 drought. resilient than most ecosystem
"Amazon forests therefore appear vulnerable models assume, at least in response
to increasing moisture stress, with the to short-term climate anomalies.”

potential for large carbon losses to exert
feedback on climate change.”

Can we reconcile these observations?

SENSING
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What are the mechanisms that drive forest photosynthetic response to drought?

Local hydrological gradients: Water table depth (WTD): The accessibility of water fo frees.

Prediction:

Is there an "other side” of drought: where there is TOO MUCH ...
water normally (anoxic conditions that inhibit tree growth or :
photosynthesis) that may be relieved by drought?
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2005 drought
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Drought Response
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Consistent decreasing patterns dependence on WTD with variability in
= mean drought responses were observed in Southern Amazon;
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P41 — “Other side of drought”: all three droughts, Southern Amazon onl
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P41 — “Other side of drought”: all three droughts, Southern Amazon onl
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Drought Response
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2. What are the mechanisms that drive forest
photosynthetic response to climate?

- PV

Hypotheses: geographically distributed mechanisms Other side of Droy™ "
of drought response Hypothesis: shallov PrOX|m|ty of
ts bett
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et al. 2022) trees

"Edaphic/soil fertility” h
forests, where gr'ow‘rh/’rur'nover is hlqh inve
less in drought resistance
quickly following rare dro Soil fertlllty
« 3. Different ability of trees to tolerate drought: drought performance (Oliveira et al 2021)

« 2. Different edaphic environments:

“rooting depth/traits” hypothesis: forests dominated by Proximity of
avoidance traits (tall trees with deep roots) or tolerance| trees to

(embolism resistance, wood density) > better drought pd
(Chitra-Tarak et al 2021; McDowell et al 2008; ter Steege ef water
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H1, H2, H3 —all three regions, 2015/2016 drought only
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L
H1, H2, H3 —all three regions, 2015/2016 drought only

Tall forests &

deep WTD "W ?D“‘:N EU“W 50°'-|.|"J
B 390 g F
= 36.0 1 ; Gu|a =
= 330{ &<
3 300] 0°
3 270 Bu &Y |
[ :-\ ’E |
24.0 1 IShort forests &
21.0 hallow WTD i
0 10 20 30
Watertable depth (m) +t10°S
: T 7—120°S
. . Standard Deviation
W 70°W snﬂwv 50°W

GAM model fit Reveals different greenup

mechanisms in different forest ecotopes
Chen, et al., Nature, 2024.



A

H1, H2, H3 —all three regions, 2015/2016 d

rought on

GAM model: AEVI~ CLIMATE: APAR+ AVPD+ AP+ AMCWD

+ ECOTOPE: + WTD + SoilFertility + TreeHeight

0.18

012 |- e dmazon | patial EVI prediction
’ = Southern Amazon -684

0.06 082

0.00 W25

1002 | r I _ C 05

X ¥ -

%100'0 | - 0.0

g1 - infertile

= 10704 -05

= 1p-06 -

510 -

=108 - fertile LY

w —

10—1.0 .
-1.5
40 0 10 20 30 40
Watertable depth (m)
39.0| i _ |D 0.5
' - tall

B 360 = 0.0

= 330

S

E 30.0 -0.5

8 270 i, &

(= B — _
240{ [l - 1.0
210! I il = 15

0 10 20 30 0 10 20 30 40

Watertable depth (m)

Watertable depth (m)

EVI anomaly

EVI anomaly

+ Drought Length

E
~ Ever-wet Amazon - 0.5
= Guiana Shield
= Southern Amazon
| ] I l i 6} 0.0
I T F' » IR2E =
:% h H. :
' 2
* * | > -0.5®
} —
oh i% ! :
| 3145)
T | —-1.0
—-1.5
0 10 20 30 40

HAND (meter)

Distinct validated predictions for 3 Amazon
regions reveal a Biogeography of forest drought

response

Chen, et al., Nature, 2024.



0°

10°S-

Resillience

o -
20°S -0.40 0.00 0.40

80°W - 70°W - B0°W  50°W - 80°V
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A biogeography of Amazon forest resilience and
vulnerability to drought
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A biogeography of Amazon forest drought
resilience and vulnerability: Regions relatively
more resilient (green) or more vulnerable (red) to
drought, based on standardized GAM drought
response predictions from ecotope factors only
(removing effects of climate variability by setting
climate equal to its basin-wide average)

Chen, et al., Nature, 2024.
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A biogeography of Amazon forest resilience and
vulnerability to drought
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A biogeography of Amazon forest resilience and

vulnerability to drought
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More vulnerable

The most resilient forest types were those with in low soil fertility, either in combination
with shallow water tables, or with tall deep-rooted forests. Chen, et al., Nature, 2024.
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3. Can we predict forest photosynthetic resilience to drought?
--A biogeography of Amazon forest resilience and vulnerability to drought

r20°N

The most vulnerable forest are predominantly
situated under prevailing winds that bring
moist Amazonian air to the south, with high
risk to maintaining the evapotranspiration that
feeds the “atmospheric rivers” to sustain South
America’s breadbasket in the agricultural regions.
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Summary, scaling to the basin via remote sensing

1. Hydraulic environments structure basin-scale drought response:
—> shallow water table forests persist (or increase) their function
during drought, a contrast to deep water table forests.

2. BUT: ecotopes (including fertility, and tree height) matter! Three
forest ecotopes show that water table depth sensitivity:

1.

... depended on fertility: fertile areas (e.g. S. Amazon) support fast-

growing but drought-vulnerable trees; these were most strongly
protected by shallow WTD; lower-fertility areas (in Guiana shield and
everwet NW Amazon): less affected by WTD or showed opposite

response
... depended on tree-height: tallest/deepest rooted trees enabled

green-up (resilience) even in regions (like the Guiana shield) with
deeper water tables




What did | learn during this process?

1.

| 2.

What is your motivation? Curiosity or tasks?

How important is the topic? There is always more to do! ---To
determine your goal is to reveal the unknowns.

. Don't be discouraged if the results are unexpected.

. Think broadly and analyze in-depth.

. Writing is super important!

. There is always room for improvement
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Map: El nino, La nino;
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What did | learn during this process?

Stay resilient & insistent!
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