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Human-centered Geospatial Data Science

Understand human experience
Human perceptions of place
Human emotions at place
Human cognition of place
Human creativity

Human-centered

Geospatial Data Science

Develop trustworthy and ethical

GIScience technology
Mitigate bias
Protect human geoprivacy
Enhance explainability of GeoAl
Build inclusive GeoAl 7
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The Recent Boom of Large Language Models

Large Language Models Diffusion Models
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Communicate with people Create graphics

What is cartography?

Cartography is the science and art of making maps. It involves the representation of spatial
data in a way that communicates information effectively to users. A cartographer is

someone who practices cartography and designs or produces maps.

The process of map-making has evolved significantly over time, from ancient hand-drawn
maps to the sophisticated digital maps of today. Cartographers today utilize a variety of
tools, including Geographic Information Systems (GIS), to create detailed and accurate

maps.
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Sense of Place

Place = Space + Human Meaning (Tuan, 1979)

Sense of place denotes those nebulous
human meanings such as subjective feelings
and perceptions that evoke different
emotions, experiences, and identities
attached to the place (Kang, 2021)

Attachment

Can we enrich our understanding of human sense of
place using generative artificial intelligence (GenAl)?_

Kang, Y., Zhang, F., Gao, S., Peng, W. and Ratti, C., 2021. Human settlement value assessment from a place perspective: Considering human dynamics and é
perceptions in house price modeling. Cities, 118, p.103333. e1se Lab



Measuring Human Perception of Place

Traditional Methods

 Self-reports (. Lively ) « Small scales
- Surveys e > | Labor-intensive
« Mental maps o ) « Time-consuming

Sense of Place

Are there better ways to measure and understand
human sense of place?
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Linking Auditory and Visual Perceptions

Audio 1 Audio 2
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No Effective Way to Visualize Auditory Perceptions!

Lack of intuitive ways to effectively and vividly characterize the acoustic
S:llshiels  environment, especially when compared with those methods for visual

perceptions
Audltory Perceptions Visual Perceptions

Acoustic Signal Attributes
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We Experience the World with All Senses Simultaneously!

Most existing studies have focused on a singular dimension of the human sense
of place while overlooking the complexity and depth of human-environment
interactions, which are inherently shaped by multi-sensory experiences
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Can We Visualize What We Hear?

Translate

Auditory Soundscape-to-lmage ‘ Street View
Diffusion Images

Soundscapes

A Soundscape-to-Image
Computational Framework

Provide
Training Data
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Soundscape-to-lmage S A\

Validate the Model ‘ ))
= | N\ >
Machine-based Human-centered - Low-Resolution Super-Resolution
Evaluation Evaluation Street View Images Diffusion Diffusion

for Evaluation

KXan.

Zhuang, Y., Kang, Y., Fei, T., Bian, M. and Du, Y., 2024. From hearing to seeing: Linking auditory and visual place perceptions with soundscape-to-image generative ¢
artificial intelligence. Computers, Environmentand Urban Systems, 110, p.102122. Qense Lab




Datasets

“street walk”

3 YouTube

“city walk”

« “village walk”

>

10,000 Audio-Image Pairs

Videos
1,667 mins

o GitHub https://github.com/GISense/Soundscape-to-Image
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https://github.com/GISense/Soundscape-to-Image

Translate What We Hear to What We See

Soundscape-to-Image Diffusion Model

- Extends Imagen, a text-to-image diffusion
model released by Google Research
« Translate natural language text descriptions to

photorealistic images using diffusion model ,s
o U-Net
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Low-Resolution Super-Resolution
Diffusion Diffusion

Soundscape-to-Image Diffusion Model

An example of the prompt "A
brain riding a rocketship
heading towards the moon."

Google Imagen. https://imagen.research.google/


https://imagen.research.google/

Al-Generated Images

Al-Generated Original Al-Generated Original Al-Generated Original Al-Generated Original
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Evaluations

Prior studies in image generation have faced challenges in evaluating the quality
of generated samples, due to the significant differences between the generated and
original images
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Evaluations — Machine-Based Approach

We performed both machine-based and human-centered approaches to evaluate the
image synthesis performance of our Soundscape-to-Image Diffusion model
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Evaluations — Human-centered Approach

1. Which one matches the audio the most? > 0:00/010 == )

Participants achieve a matching rate of 80.455%
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Findings — Lighting Conditions
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The Soundscape-to-Image Diffusion Model generate images with
different lighting conditions based on acoustic environment
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Diffusion Models (DALLE) Perceive Beijing and London... 18

Jang, K.M,, Chen, J.,Kang, Y., Kim, J., Lee, J., Duarte, F. and Ratti, C., 2024. Place identity: a generative Al's perspective. Humanities and Social Sciences
Communications, 11(1), pp.1-16.



Opportunities 19
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Hou, C., Zhang, F., Li, Y., Li, H., Mai, G., Kang, Y., Yao, L., Yu, W., Yao, Y., Gao, S. and Chen, M., 2025. Urban sensing in the era of large language models. The Innovation, 6(1). {2l 1



Challenges

Bias in training data and algorithms may lead to
discrepancies between LLM and its idealized outcomes in

human society

>

» Challenges in capturing cultural and value diversity

e » Lack of fine-grained spatiotemporal cognition
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The University of Texas at Austin
Thank You!

Empower Future Smart Place with
Human-centered Geospatial Data Science

Yuhao Kang
yuhao.kang@austin.utexas.edu

Thanks for the contributions by my co-authors: Yonggai Zhuang, Teng Fei, Kee Moon Jang, Fabio
Duarte, Ce Hou, Fan Zhang, Song Gao, and others
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