
Environmental Modelling and Software 176 (2024) 106002

Available online 4 March 2024
1364-8152/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

The model-as-a-resource paradigm for geoscience digital ecosystems

Paolo Mazzetti *, Stefano Nativi
Istituto sull’Inquinamento Atmosferico, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy

A R T I C L E I N F O

Handling Editor: Daniel P Ames

Keywords:
Scientific models
Interoperability
Digital ecosystems
MaaR
Earth observation

A B S T R A C T

A long-term goal of environmental science and Earth observation is to enable the creation of a “Model Web” of
semantically interconnected data and models. Geospatial models are usually exposed on the Web as services
accessible through heterogeneous interfaces. However, such services, which represent instances of the paradigm
called Model-as-a-Service (MaaS), cannot be easily exploited beyond their original use as defined by the service
provider. To overcome this important limitation and better support transparency, reproducibility, replicability
and reusability of the model (following the Open Science paradigm), we investigated the adoption of a Model-as-
a-Resource (MaaR) approach, in which a model is considered a generic digital resource that, as such, can play
different roles in different potential use cases. The proposed MaaR framework can play an important enabling
role in the realization of those digital ecosystems that generate environmental knowledge. The main challenges
and opportunities are discussed in the manuscript.

Software and data availability

The paper presents an architectural framework for model sharing
which does not refer specifically to any software solution for imple-
mentation. Section §4.5 mentions a set of technologies (software and
standards) that could be adopted for the implementation of the proposed
framework. All the cited technologies are available as open standards or
open source software from their publishers and developers. A couple of
software solutions (DAB and VLAB) are developed by authors’ research
unit and served to implement proofs-of-concept for the proposed
architectural framework. More detailed information on these technolo-
gies is provided below.

Name of the software DAB (Discovery and Access Broker)
Developer CNR-IIA
Contact information enrico.boldrini@cnr.it
Programming language Java
Cost Free
Software availability https://github.com/ESSI-Lab/DAB
License GNU Affero General Public License v3.0
Name of the software VLAB (Virtual Earth Laboratory)
Developer CNR-IIA
Contact information mattia.santoro@cnr.it
Programming language Java
Cost Free
Software availability https://github.com/ESSI-Lab/DAB
License GNU Affero General Public License v3.0

1. Introduction

1.1. Scientific computational models

Modelling is an essential activity for modern science. In particular,
the so-called representational models can emulate the behavior of a well-
delimited system providing useful insights on the world that surrounds
us. They can come in many different fashions: scale models, analogical
models, idealized models, toy models, etc. (Frigg et al., 2020). In the
current scientific practice, mathematical models, which aim at
providing a mathematical representation of a real system, are the most
important ones. In late XIX century and early XX century, mathematics
formalization was a major step that allows expressing mathematical
proofs as a mechanical procedure or an algorithm. This development
suggested that, if physical processes can be represented by mathematical
formulas, and mathematical formulas can be encoded as algorithms,
then some mechanical instrument might emulate physical processes.
This dream became a reality with computers development and the
introduction of the computer science. The advent of computers has
transformed science and engineering. Based either on physical theories
or on big data processing, scientific procedures have been implemented
as software code and executed to simulate and predict the behavior of
physical systems (Imbert et al., 2017). Then, computational models have

* Corresponding author.
E-mail address: paolo.mazzetti@cnr.it (P. Mazzetti).

Contents lists available at ScienceDirect

Environmental Modelling and Software

journal homepage: www.elsevier.com/locate/envsoft

https://doi.org/10.1016/j.envsoft.2024.106002
Received 28 September 2023; Received in revised form 20 February 2024; Accepted 27 February 2024

mailto:enrico.boldrini@cnr.it
https://github.com/ESSI-Lab/DAB
mailto:mattia.santoro@cnr.it
https://github.com/ESSI-Lab/DAB
mailto:paolo.mazzetti@cnr.it
www.sciencedirect.com/science/journal/13648152
https://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2024.106002
https://doi.org/10.1016/j.envsoft.2024.106002
https://doi.org/10.1016/j.envsoft.2024.106002
http://creativecommons.org/licenses/by/4.0/

Environmental Modelling and Software 176 (2024) 106002

2

been joined to represent more complex scenarios, in an integrated
modelling approach (Laniak et al., 2013). More recently, the advance-
ment of communication technologies allowed models to run on
distributed infrastructures, improving their efficiency and scalability.
Since the last decade of the 20th century, the World Wide Web (here-
inafter the Web) has provided an infrastructure of easily accessible
protocols and technologies that allows harmonized access to many
different digital resources including scientific models and algorithms.

1.2. Open science

Science is recognized as our best source of knowledge not because it
delivers truth, (which is an unrealistic expectation) but because it jus-
tifies its statements. In principle, every rational person can evaluate the
grounding of a scientific result. Many aspects of what is recognized as a
correct scientific method aim at assuring that scientific results can be
controlled and evaluated (Barton et al., 2020). However, the complexity
of current science methods puts in danger the evaluability of scientific
results since only a minority of literate people can understand whether a
mathematical equation, or a simulation code is a justification of a sci-
entific result. The intricacy of big integrated models can be a barrier
even for experts (Lloyd and Winsberg, 2018) while data-driven models
pose even bigger challenges: although machine learning experiments
can be precisely defined, leading to perfectly reproducible research
(Braun et al., 2018), their black-box nature often makes their very
meaning obscure.

These difficulties pose societal challenges related to the education
system in modern societies and the mediating role of the scientific
community, but do not exempt scientists from justifying their assertions.

The Open Science movement addresses this fundamental issue
(Fecher et al., 2014) trying to overcome the cultural and technical
barriers that obstacle the full documentation of scientific findings, as
result of the adoption of new technologies and methodologies in science.
According to the Open Science paradigm, every step in the generation of
scientific knowledge should be transparent and evaluable. Open Science
encompasses concepts like Open Data (sharing of data used for the
generation of knowledge), Open Software (sharing of software used for
data processing) and Open Access (to the results of scientific research
also as source of further research).

Open Science advocates transparency of scientific results, enabling
literate people to evaluate their soundness, reproducibility, that is the
possibility to generate again the same scientific experiments, replica-
bility, that is the possibility to adapt existing results to different contexts,
and, finally, reusability, that is the possibility to utilize existing results for
further scientific investigations.

This article investigates how data- and physics-driven computational
models can benefit from appropriate use of the Web architecture to meet
open science requirements, having in mind the application scenarios of
green transition and sustainable development. The next section sum-
marizes the role of software architectural styles in the design (and
description) of distributed systems and their adoption in the Web
environment. Section 3 4is central as it describes a potential multi-style
framework for sharing scientific models treated as digital resources
supporting high-level Open Science scenarios. Section 4 summarizes the
scientific and technical constribution of the proposed framework. Sec-
tion 5 discusses some important aspects related to the sharing of scien-
tific models, in the more general context of the digital ecosystems’
paradigm. Finally, section 6 draws some conclusions.

2. Background

To demonstrate the applicability of the Web architecture to scientific
model sharing it is necessary to clarify the importance played by the
different architectural styles. Therefore, it is essential to have a sufficient
understanding of the characteristics that distinguish a service-oriented
approach versus a resource-oriented one, in the Web environment. For

this purpose, it is useful reconsider a set of well-established concepts in
the light of model interoperability.

2.1. Software architectural styles for implementing distributed systems

Software architecture description mainly serves at system design and
analysis to implement a system with some desired characteristics, and
evaluate the features that distinguish an existing system, respectively. In
technical literature, there are several possible definitions of software
architecture (Lloyd and Winsberg, 2018). They all introduce some
essential characteristics stemming from a couple of common and general
concepts: a software architecture refers to a (computing) system and is
expressed through a collection of structures – i.e., sets equipped with
properties and relationships, and isomorphic to (the relevant part of) the
target system. The architecture design expresses a set of constraints
reducing the compatible structures.

In software engineering, another well-used concept is that of
“architectural style”. A well-known definition of architectural style (by
the Web architect Roy Fielding) is the following: An architectural style is a
coordinated set of architectural constraints that restricts the roles/features of
architectural elements and the allowed relationships among those elements
within any architecture that conforms to that style (Fielding, 2000). While a
system architecture consists of the full specification of a target structure,
an architectural style specifies only few high-level constraints, which are
necessary to satisfy a set of more general features. Further constraints
may differentiate among multiple architectures that are compliant with
the same architectural style.

2.2. Resource-oriented and service-oriented software architectures

For Web distributed systems, the most widespread software archi-
tectures can be categorized (at the highest level) as service-oriented or
resource-oriented architectures.

Service-oriented architectures are built around the concept of ser-
vice1 implying the idea of acting on behalf of someone else –i.e., a
customer, a client, or a master. In 2006, the Organization for the
Advancement of Structured Information Standards (OASIS) defined a
Service Oriented Architecture (SOA) as: “a paradigm for organizing and
utilizing distributed capabilities that may be under the control of
different ownership domains” (OASIS Open, 2006). In SOA, the full logic
of an application performing a task is decomposed into smaller, distinct
units of logic that machines (i.e. servers) expose as services to other
machines (i.e. clients) (Erl, 2005). The logic behind a service can be
arbitrarily complex, ranging from full applications to simple actions (e.
g., microservices). Due to services and interfaces heterogeneity, SOA
needs ancillary services for finding and locating service producers (i.e.,
service registries) and to retrieve a description of the service interface
(Salvendy and Karwowski, 2010).

Resource-oriented architectures are built around the concept of
resource2 that is something supplying a want or deficiency, or, as the World
Wide Web Consortium (W3C) says, an item of interest in the information
space (W3C, 2004). The rationale behind resource-orientation is that all
pieces of information are available as resources through a uniform
interface that requires a resource identifier. Since the interface must be
the same for every kind of resource the allowed operations are neces-
sarily low-level – typically mapping the CRUD pattern (Create-Re-
trieve-Update-Delete). Complex actions on resources are implemented
through a concatenation of the basic operations.

The Web is the most well-known system based on a resource-oriented
architecture (ROA). It was designed according to the Representational

1 “from Latin servitium condition of a slave, body of slaves, from servus
slave” [10, S.v. Service].

2 “something that lies ready for use or that can be drawn upon for aid or to
take care of a need” [14, S.v. Resource].

P. Mazzetti and S. Nativi

Environmental Modelling and Software 176 (2024) 106002

3

State Transfer (REST) architectural style including six constraints
(Fielding, 2000), (Fielding and Taylor, 2002), (Fielding et al., 2017):
Client-server, Stateless, Cache, Uniform interface, Layered system, and
Code-on-demand. The Uniform Interface is the essential constraint of
ROAs. It simply indicates that all the resources exposed by the system,
must be accessible through the same interface. Therefore, no prior
knowledge is necessary to interact with a resource. To better specify the
Uniform Interface characteristics, the REST style specifies some
sub-constraints: identification of resources, manipulation of resources
through representations, self-descriptive messages, and hypermedia as
the engine of application state.

Notably, the ‘hypermedia as the engine of application state’
constraint (sometimes shortened as HATEOAS) characterizes the REST
style. Due to the Stateless constraint, REST stateful applications are
designed as a state machine: the state of an application is stored in the
representation of the currently accessed resource, including the hyper-
links that allow navigating towards other resources.

2.2.1. Resource and service-orientation on the web
The Web information space is built on the Internet and its imple-

mentation is based on a suite of specifications for its three architectural
pillars (W3C, 2004).

• the Uniform Resource Identifier (URI) for Identification (Berners-Lee
et al., 2005);

• the HyperText Transfer Protocol (HTTP) for Interaction (Nielsen
et al., 1996); and

• the HyperText Markup Language (HTML) for Formats (Web Hyper-
text Application Technology Working Group (WHATWG)).

The three specifications URI-HTTP-HTML (with their extensions and
descendants) are sufficient for implementing the Web space in full
compliance with the REST architectural style. Yet, these specifications
are quite flexible, providing a universal addressing schema (URI), a
general-purpose request/response messaging protocol (HTTP), and an
advanced hypertext format (HTML), which can be used beside and
beyond their intended scope. This allowed developing services and ap-
plications using Web technologies but conforming to different archi-
tectural styles or at least not conforming with the original REST style.

2.2.2. Web service-oriented architectures
In the Web environment, building a service-oriented architecture

(SOA) means dismissing most of its characteristics derived from the
REST constraints. For example, the heterogeneity of interfaces makes
the cache constraint mostly useless: rarely the same request will be
repeated with an exact copy of the (many) parameters required by a
typical service interface.

On the other hand, a service-oriented style introduces several addi-
tional architectural constraints to manage the provider/consumer
interaction. Indeed, to implement the properly called Web Services, a
full SOA protocol suite was defined, complementing URI and HTTP with
other specifications – including SOAP for message transport, the Web
Services Description Language (WSDL) for service description, the
Universal Description Discovery and Integration (UDDI) for service
registry, etc. (OASIS Open et al.).

2.2.3. Web resource-oriented architectures
On the Web, implementing a ROA, and specifically as a RESTful

architecture, is easy since it is the style the Web is designed on. However,
there are some subtleties in the REST style that should be considered to
avoid breaking its constraints. Typical aspects to be considered are:

• Not all the (new) Web technologies are compliant with the REST style: for
example, cookies –small chunks of information shared by clients and
servers during the message exchanges – can easily violate the
Stateless constraint (Barth, 2011). Indeed, due to cookies, two

different users can have a completely different view of the same
resource identified by its URI.

• Application Programming Interfaces (APIs): It is common to read about
“RESTful APIs” referring to parameter-based interfaces encoded in
the URL, thus implementing some kind of Remote Procedure Call
(RPC) over HTTP (RPC/HTTP). Instead, a real REST API is nothing
more than a set of resources with an URI assigned and hypermedia
representations. (Fielding) (Roy Fielding on Versioning, Hyperme-
dia, and REST).

Of course, there is no specific obligation to be fully compliant with
REST, but any violation should be the result of careful design to preserve
the required features of the system.

The main limitation of the Web navigation paradigm is that a human
user is needed to understand the content of a hypermedia document and
then select the relevant hyperlink to trigger an application state transi-
tion. The concept of Semantic Web was proposed as an improvement of
the Web to support machine-to-machine interaction, while keeping it
conforming to the REST style (Berners-Lee et al., 2001). The Semantic
Web concept consists in making the meaning of resources and hyperlinks
explicit and machine-readable. The Semantic Web can be implemented
by annotating resources and links by semantically enriching their met-
adata, or more generally, in a separated subgraph pointing to the re-
sources. At the foundation of the Semantic Web lies the Resource
Description Framework (RDF), a specification allowing to express
statements about resources in the form of subject–predicate–object,
known as triples (W3Cb). A triple can predicate a property about a
resource (subject) with an assigned value (object) or it can predicate a
relationship between two resources (subject and object). Subjects,
predicates, and objects are all referred through URIs to make them
readable. An agreement on shared vocabularies, thesauri and ontologies
makes automated processing possible.

2.2.4. Comparing resource and service-oriented architectures
As expected, service and resource-oriented architectures differ in

terms of capabilities, features and in terms of barriers for users and
providers adoption.

❖ Application design
➢ SOAs are provider-driven: providers decide which services to

publish and hence which use cases to support. This allows pro-
viders to support arbitrarily complex use-cases, but it limits the
possibility to enable new use-cases by new users, including sys-
tem integrators.

➢ ROAs are user-driven: providers expose the resources that they
control, while users (e.g., application developers) decide how to
combine them in a workflow that implements an application. This
approach allows user to create new applications although it may
be a complex task.

❖ Infrastructure requirements
➢ SOAs are more demanding for providers: a) they must design and

implement the interface to access their service; b) since services
require execution, they must deploy them on a computing and
storage infrastructure; c) they must estimate the required capa-
bilities (number of requests, availability, security) to set up the
service and possibly scale up.

➢ ROAs have a lower entry barrier for providers. They only require
exposing the resources, sharing their representations that can be,
and often are, static. A common Web server is generally sufficient.

These differences make SOAs better fitting in environments where
providers have strong IT expertise and capabilities, and use-cases are
well-known – such as in domains like e-Government, e-Commerce, etc.
On the other hand, ROAs fit well to open environments where resource
providers may have little IT expertise or infrastructural capabilities, and
use-cases are not defined in advance or can easily evolve. However, in

P. Mazzetti and S. Nativi

Environmental Modelling and Software 176 (2024) 106002

4

this case the burden of application development is completely in the
hand of a third party.

2.3. Mixed vs. multi-style architectures

Service-oriented and resource-oriented styles are, in principle, not
compatible since the respective constraints conflict (e.g., dedicated
interface vs. uniform interface). A mixed approach would disregard one
or more constraints resulting in a null-style architecture and, thus, one
with no characteristics guaranteed.

While mixed architectures are not doable, it is possible to have multi-
style architectures where different subsystems, each based on its own
style, communicate through dedicated gateways. Gateways are archi-
tectural components that lie at the boundaries of two subsystems and do
not violate the respective constraints. For example, to make a RESTful
and a SOA system interact, a gateway could expose a service through a
resource such as a Web form to fill (Fig. 1), or a resource workflow as a
service (Fig. 2).

2.4. Sharing of computational models

The many digital transformations of society provide, at the same
time, both new opportunities and new challenges to Open Science.
Digital infrastructures enable data and models sharing in the scientific
communities (Chen et al., 2020). Focusing the attention to geospatial
information – i.e., the information with an implicit or explicit reference
to space and time – a big effort has been conducted in the last decades, to
support data management and sharing. Despite lasting financial, tech-
nical, and legal barriers to data sharing, the so-called FAIR (Findability,
Accessibility, Interoperability, and Reusability) data principles (Wil-
kinson et al., 2016) are now widely recognized by the scientific com-
munities and recommended by research and innovation funding
agencies in their programmes (European Commission
Directorate-General for Research and Innovation, 2016), (European

Commission, 2018). In parallel, technical solutions, including standard
specifications, dedicated tools, brokered systems, cloud platforms, etc.
make possible to implement operational systems for data sharing.

Concerning modelling, the situation is noticeably less mature
(Laniak et al., 2013). Several efforts to facilitate model sharing, and
possibly, interoperability and integration have been carried out in the
last decades (Nativi et al., 2012). The simplest approach is the devel-
opment of dedicated tools, like desktop applications, usually including a
Graphical User Interface (GUI), to select a model and run it with proper
parameters. Such approach, also termed as Model-as-a-Tool (MaaT),
does not support a real interoperability and integration of models.
Another proposed solution is the development of model frameworks,
like the Open Modelling Interface (OpenMI), or model workflow engines
(e.g., Taverna, Kepler) allowing to combine different models. However,
they usually impose strict technological constraints on model developers
and integrators, as requiring the adoption of a specific programming
language or a development/deployment platform. These constraints act
as a high barrier to interoperability - e.g., for the exploitation of legacy
models. Moreover, they are often specialized for supporting specific
community requirements, limiting multidisciplinary applications. More
recently, these frameworks fully evolved towards Component-Based
Architectures (CBAs), with heterogeneous model implementations
dialoguing through well-defined interfaces, and later to service-oriented
architectures for networked components.

2.4.1. Model sharing on the web
The idea of exposing models on global networked systems also

enabling their combination to form loosely coupled integrated models
has existed in various forms, for a long time. However, mostly due to
technological constraints, it was not feasible until the Web become a
mature platform for resources sharing. Around 2007, a vision of a
“Model Web” was suggested by Gary Geller, Woody Turner and Forrest
Melton for the ecological science domain (Geller and Turner, 2007),
(Geller and Melton, 2008). They proposed the “Ecological Model Web”

Fig. 1. Applying a multi-style architecture, a service is accessed through a resource (a Web form).

P. Mazzetti and S. Nativi

Environmental Modelling and Software 176 (2024) 106002

5

as “a dynamic network of computer models that, together, can answer more
questions than the individual models operating alone”. The authors clearly
identified potential user scenarios (i.e., protected areas and natural
ecosystems management) and challenges (i.e., models interoperability
and stakeholders collaboration). In 2009, a “Model Web Development”
task was initiated by the Group on Earth Observations (GEO) to develop
“a dynamic modelling infrastructure (Model Web) to serve researchers,
managers, policy makers and the general public” (Nativi et al., 2009a). The
task activity (led by Gary Geller and Stefano Nativi) produced the
definition of a Model Web Architecture consisting of: (i) a conceptual
framework, (ii) a resource model, and (iii) a metadata framework
(Nativi et al., 2009a). Contextually, some proofs-of-concept were elab-
orated for the natural ecosystem domain (Nativi et al., 2007), (Nativi
et al., 2009b).

2.4.2. Model-sharing with service-oriented architectures: model-as-a service
Accessing a model usually means running it. Therefore, it is not sur-

prising that the typical approach to sharing models is to offer the ability
to run them remotely. This fits easily into the service-oriented approach,
by defining a service called “run model”. Providing online services for
interacting with computational models is commonly referred to as the
Model-as-a-Service (MaaS) approach.

In 2007, the Open Geospatial Consortium (OGC) released a first
version of a Web Processing Service (WPS) specification for “a stan-
dardized interface that facilitates the publishing of geospatial processes, and
the discovery of and binding to those processes by clients” (OGC, OpenGIS
Web Processing Service). Although limited to geoprocessing, the scope
was wide since a WPS “may offer calculations as simple as subtracting one
set of spatially referenced numbers from another […], or as complicated as a
global climate change model”.

While WPS provides a general-purpose interface for processing any
kind of vector or raster data, in 2008, OGC released a specification for a
Web Coverage Processing Service interface focusing on coverage data (e.
g., satellite imagery) (Baumann, 2010).

In 2015, OGC published a second version of WPS (WPS 2.0.2) (OGC)
which adopted a different specification approach, defining “a core con-
ceptual model that may be used to specify a WPS in different architectures
such as REST or SOAP”.

2.4.3. Model-sharing with resource-oriented architectures: model-as-a-
resource

While the primary use of a computational model is to generate
output through processing, providing a single service for running a
model does not exhaust its potential. A computational model is a
resource that can be exploited in several potential scenarios together
with resources of other types. Users may be interested in understanding
what the model does, how it was implemented, or deploying it on a high-
performance computing (HPC) infrastructure for rapid processing.

The MaaS approach suffers from all the limitations of service-
oriented systems. Overall, service providers define and limit resource
usage (in this case, models). These providers decide which model to
expose, which features are accessible remotely and which infrastructure
to use (local machine or cluster, elastic cloud, etc.) thus limiting the non-
functional aspects, e.g., input and output data size, processing time, etc.

It is interesting to evaluate the possibility to support interaction with
computational models in a more open ROA.

In the past, some studies have been carried out to investigate and
possibly demonstrate the feasibility of model sharing in a ROA. Most of
these studies refer to ROAs in a general sense (Mazzetti et al., 2009),
(Foerster et al., 2011), (52North), but a few also consider a potential
RESTful implementation (Granell et al., 2013), (Flaishans et al., 2016).
Nevertheless, the proposed solution is often just a translation of a ‘run a
model’ service to a ‘runnable model’ resource, still missing many po-
tentialities of a ‘computational model’ resource – for example, many
implementations miss the point that the source code is the most relevant
representation of a ‘computational model’ resource, for transparency
and reusability. More recently, resource-oriented approaches have been
explored: HydroShare for the hydrology community (Tarboton et al.,

Fig. 2. Applying a multi-style architecture, a RESTful application is exposed as a service.

P. Mazzetti and S. Nativi

Environmental Modelling and Software 176 (2024) 106002

6

2024), and the GEO Infrastructure with its Knowledge Hub (Group on
Earth Observations) in the Earth Observation domain, are two notice-
able examples. The former specifically focuses on data and model
sharing, while the latter focuses more generally on Open Knowledge
support (GEO, 2021). However, the full exploitation of computational
models, as digital resources, requires the definition of a new architec-
tural framework that builds on successful experiences of both
resource-oriented and service-oriented architectures.

3. System architecture for a MaaR framework

3.1. A model-as-a-resource framework to realize the Model Web vision

This section exposes the design of a distributed system architecture
to share computational models as resources –i.e., a Model-as-a-Resource
(MaaR) framework– and (in perspective) implement a Model Web. To
this aim, a multi-style architecture (characterized by a RESTful core and
a service-oriented subsystem for automating complex resource work-
flows) is proposed. This architectural solution provides the required
functionalities to support high-level scenarios of Transparency, Repro-
ducibility, Replicability, and Reusability, along with the relevant non-
functional requirements –which are inheritably related to lowering
entry barriers to providers and users of scientific models. To address
(high-level) scenarios and use-cases, the main components of a MaaR
framework are defined in the next sections. Being a complex system,
MaaR components are specified by applying a view-based approach.
Each viewpoint deals with the concerns of a stakeholder class. In
keeping with the ISO Reference Model for Open Distributed Processing
(RM-ODP) (ISO), the following viewpoints are considered: Enterprise,
Computational, Information, Engineering, and Technology.

3.2. Enterprise viewpoint

The enterprise viewpoint “is concerned with the purpose, scope and
policies governing the activities of the specified system within the organization
of which it is a part” (ISO). As such, scenarios and actors are the most
important elements of this view.

3.2.1. Scenarios
The proposed MaaR framework aims at addressing four overarching

Open Science scenarios.

• Trasparency: a user should be able to know what a computational
model is, which scientific model it implements, which data it re-
quires and produces, how it is implemented, etc.

• Reproducibility: a user should be able to reproduce a simulation
experiment.

• Replicability: a user should be able to replicate the experiment in a
different context (i.e., geographical area, temporal extent, data
sources, etc.) Limitations on replicability can be defined in or derived
by the computational model/experiment description.

• Reusability: a user should be able to reuse the simulation as part of a
more general application. For example, a workflow for generating
Land Cover Change maps could be used as part of a socio-economic
model for decision-making. Again, limitations on reusability can be
defined in or derived by the computational model/experiment
description.

It is worth noting that the general Open Science scenarios above
should not be considered (only) as scientific research scenarios. Trans-
parency, Reproducibility, Replicability and Reusability are not only re-
quirements for improving scientific knowledge, but also for improving
accuracy of, and trust in science-informed decision-making (GEO,
2021). Replicability and Reusability are particularly important to enable
the creation of knowledge products and services for addressing global
changes that are typically multidisciplinary in nature.

3.2.2. Actors
Based on the previous description of scenarios we can identify some

major actors.

• End User: End Users are the ultimate users of a product generated by
the MaaR framework. For example, they may be decision-makers
who make policy-relevant decisions based on a set of indicators
generated with computational models processing EO data.

• Intermediate User: Intermediate Users directly interact with the MaaR
framework. The most important Intermediate Users are the Appli-
cation Providers, those who generate applications tailored to the End
Users, using the functionalities offered by the MaaR framework.

• Providers: As the name implies, Providers provide the components of
the MaaR framework. They include:

▪ Resource Providers, who provide (and maintain) the infor-
mation resources exposed by the MaaR, in particular data-
sets, computational models, knowledge artifacts (Data
Provider, Model Provider, Knowledge Provider).

▪ Component Providers, who provide (and maintain) the
architectural components of the MaaR framework.

▪ Service Providers, who provide (and maintain) services
offered to other Users and Providers to facilitate their work.
E.g., cloud service providers.

3.3. Information viewpoint

The information viewpoint “is concerned with the kinds of information
handled by the system and constraints on the use and interpretation of that
information” (ISO). It plays a fundamental role in a ROA since a resource
is an item of interest in the information space (W3C, 2004) and its char-
acterization as an information element is essential.

For the MaaR framework, the conceptual model that was proposed
for the Model Web can be considered as a valuable starting point to
identify the necessary resources (Fig. 3). It recognizes many resources,
including the main abstract Model resource along with its potential
representations (ModelRepresentation) and descriptions (Mod-
elMetadata), differentiated by the multiple instances of ModelRun re-
sources, and associated with input and output datasets.

3.3.1. Model resources

3.3.1.1. Models as algorithms. To build the Model Web by applying a
MaaR approach, the most important resource is the Model object. As
introduced in the previous sections, in a MaaR framework, a Model
resource refers to a scientific model, with its computational represen-
tation as an optional part of its description –although required for
running the model on a computer system.

But what a Model resource, exactly, is? There are many potential
answers. The broadest one is that a Model is identified by how it relates
input and output values (also referred as input/output semantic equiv-
alence) (Lastovetsky and Gaissaryan, 1994). The strictest one is that a
Model is identified by the program that effectively computes the output
value from the input value. However, none of them captures the intui-
tive notion of a Model resource: the former only considers the observ-
able behavior (input/output) losing any reference to how the Model
represents the reality; the latter does not distinguish between relevant
and irrelevant differences in implementing programs.

Computer science distinguishes among computation results, algo-
rithms and programs, based on the logic concepts of syntax vs. seman-
tics, and sense vs. denotation. According to Moschovakis (1993),
programs are syntactic objects, while “algorithms are semantic (mathe-
matical, set theoretic) objects” explaining how to generate an output. The
algorithm must be considered the sense of a program while its output
value is its denotation - “A program is a piece of text, it means nothing
uninterpreted; its interpretation (or one of them) is precisely the algorithm it

P. Mazzetti and S. Nativi

Environmental Modelling and Software 176 (2024) 106002

7

defines, and that algorithm is no longer a syntactic object”. This definition of
an algorithm provides an intermediate concept between the observable
input/output relationship and the implementing program, which fits
well to the concept of Model resource. Therefore, in the proposed MaaR
framework, a Model resource is the algorithm that computationally describes
a scientific representational model. In such a way, a strong semantic
equivalence is adopted, avoiding both the weak semantic equivalence
and the syntactic equivalence: a) two Models computing the same
output for the same input (weak equivalence) are not necessarily
equivalent, and b) two Models realized by different programs (syntactic
difference) are not necessarily different.

3.3.2. Other model resources
By identifying models with algorithms, it is possible to assume that

models can have multiple realizations encoded as syntactically different
programs. Software programs are considered just as possible represen-
tations of the same Model resource –not having to introduce further
resources in the schema. However, this choice would have some draw-
backs, because in general a program (as a source code) does not include
all the necessary information –e.g., libraries, software framework ver-
sions – for its execution, which is one of the main objectives of a MaaR
framework. To address that, a dedicated Model Implementation resource
is introduced, which logically collects all the necessary information to
run a Model. In addition, a Model may have one or more Model
Description resources, which explain the scientific background of the
representational model. Finally, a model execution (i.e., a run) estab-
lishes a relationship between specific input and output datasets, as well
as potential further conditions. Therefore, it is convenient to create
dedicated Model Run resources to store this kind of information.

In summary, the core MaaR resources are.

• Model resource: the algorithm that describes a scientific representa-
tional model.

• Model Implementation resource: the set of information required to run
a scientific representational model, including implementations as
computer programs.

• Model Description resource: a piece of information about the scientific
background of a representational model.

• Model Run resource: the context of a specific model run.

It is expected that a full implementation of a MaaR framework will
introduce further ancillary resources that are accessible to different sets
of users - e.g., model inventory, model run inventories.

3.3.3. Data resources
For a MaaR framework, the second important category of resources is

data. Dealing with data is much easier than with models because data
are commonly managed as statical resources; moreover, there is a lot of
conceptualization and standardization work (carried out in the last de-
cades) to leverage on data description and representations at global and
community level (ISO/TC 211), (OGC Standards), (Sansone et al., 2019).
Relationship between data and models is largely missing - e.g., the
possibility to formalize that a particular dataset is an input, or an output
of a given model.

For the MaaR framework, the Data resources taxonomy includes.

• Data resource: the set of values of parameters or indices.
• Data Description resource: a piece of information about the back-

ground of data - e.g., accuracy, how they have been obtained.

3.3.4. MaaR framework main resources
The main resources and their relationships characterizing a MaaR

framework are depicted in Fig. 4. The conceptual schema defines that.

1. The Model Description resources should provide the constraints on the
Model use, including for example the types of input and output data,
the geographical coverage, the temporal extents, and all the as-
sumptions to correctly apply the model.

2. The Model Implementation resource should include the Model Code,
which is the program implementing the model algorithm as well as
all the necessary information to execute it –such as the specificities of
the running environment.

3. The Model Run resource is associated with Input and Output Data that,
in turn, should be compliant with (i.e., should realize) the respective
constraints.

Noteworthy, the potential parametrization of the model can be
expressed as part of the model description. However, since a parame-
trized model can be considered as a collection of models that are indexed
by parameters values, the parameters can be logically considered as

Fig. 3. The Model Web data model – from (Nativi et al., 2012).

P. Mazzetti and S. Nativi

Environmental Modelling and Software 176 (2024) 106002

8

Input Data –see the Kleene’s Parametrization Theorem (Odifreddi,
1989).

3.4. Computational viewpoint

The Computational viewpoint “is concerned with the functional
decomposition of the system into a set of objects that interact at interfaces -
enabling system distribution” (ISO).

The adoption of a resource-oriented architectural style greatly sim-
plifies the computational viewpoint. ROAs move the system complexity
from the operations definition to the resources identification and
description making the functional decomposition relatively easy – by
leveraging the Uniform Interface constraint. Mapping the CRUD pattern,
the system must be able to support high-level functionalities of resource
management (to create, update and delete resources) and access – to
retrieve and present resources.

3.4.1. Building applications: hypermedia as the engine of application state
To develop specific applications, the REST style builds on the use of

hypermedia: an application is created as a workflow of interactions with
resources. A couple of examples of use-cases can show how a RESTful
application can be built based on the proposed resources and some

ancillary resources that are necessary for specific cases.

3.4.1.1. A transparency use-case. Description: “A user finds a model M
and the information that, through the model, it is possible to generate a
dataset DO by ingesting a dataset DI. The user collects information about the
model.” (see Table 1)

To implement this use-case the user needs an entry point expressed
as a URI. The entry-point may be a Web form to search a catalogue/
digital library of models (Model Inventory resource) based on an in-
ventory of models with filtering functionalities accessible through the
query part of the URI.

3.4.1.2. Reproducibility, replicability use-case. Description: “A user finds
a model M and the information that the model M can generate a dataset DO
by ingesting a dataset DI. The user run the model to reproduce the result cited
in the model description and to replicate it on a different scenario”. (see
Table 2)

HATEOAS constraint induces to design applications as state ma-
chines, where the hypermedia documents represent a state, and the
hyperlinks activate the state transitions. Fig. 5 shows the Reproduc-
ibility and Replicability use case represented as a state machine.

The two examples, previously discussed, show the flexibility of MaaR

Fig. 4. Main resources of a MaaR framework.

P. Mazzetti and S. Nativi

Environmental Modelling and Software 176 (2024) 106002

9

and RESTful approaches. Through the simple definition of a core set of
resources (along with a careful design of their representations) and by
adding some ancillary resources (e.g., dedicated forms), it is possible to
support complex use-cases implementation – via the introduction and
encoding of the different application states. The examples show some

limitations and drawbacks, too.

• For Reproducibility and Replicability, the model run is strongly
constrained by the provider’s capabilities. The user cannot do more
than what is proposed by the Model Form.

• A full Reusability use-case, where a model becomes part of a more
general workflow, is rather complex to implement.

However, it is worth noting that resource-orientation enables also
offline completion of similar use-cases.

3.4.1.3. Reproducibility, replicability use-case (offline alternative).
Description: “A user finds a model M and the information that, through the
model, it is possible to generate a dataset DO by ingesting a dataset DI. The
user run the model to reproduce the result cited in the model description and
to replicate it on a different scenario.” (see Table 3)

Although this may be a non-optimal solution, it is something that
service-oriented architectures cannot provide. With service-orientation,
users have no alternative but utilizing the proposed MaaS service. In-
formation for building and running a model is part of the description of a

Table 1
Transparency use case description.

Step User System

1 The user accesses the Model
Inventory resource.

The system answers presenting a Model
Catalog form with fields for filtered
search.

2 The user fills in the fields and
launches the query.

The system answers presenting a form
with fields for filtered search and the
results of the previous query as a list of
links to Model resources with a short
description.

3 The user selects the link of
interest.

The system answers presenting the basic
representation of the selected Model
resource with a backlink to the Model
Inventory resource, links to Model
Description resources, links to Model
Implementation resources and links to
previously generated Model Run
resources.

4 The user selects one Model
Description resource.

The system answers with a scientific
paper informing that the model produced
a significant scientific result.

5 The user goes back and selects
another Model Description
resource.

The system answers with a scientific
paper describing the scientific basis of the
model.

Table 2
Reproducibility and Replicability use cases description.

Step User System

1.4 (As in the Transparency use-case) (As in the Transparency use-case)
5 The user goes back and selects one

Model Implementation resource.
The system answers with
information about an
implementation of the model in
Python programming language and
links to a Git repository containing
the source code (Model Code), and
to a Model Form resource for
execution.

6 The user goes to the Model Form
resource.

The system answers with a form
including a map for selecting a
geographical area, a calendar for
selecting a temporal extent, and a
drop-down menu for selecting the
input datasets. The form has also a
drop-down menu of predefined
scenarios.

7 The user selects one of the predefined
scenarios (Reproducibility) cited in
the Model Description previously read,
and start the model.

The system answers with some
information and a link to the
generated dataset.

8 The user downloads the generated
datasets and locally verifies that it
corresponds to what the Model
Description says.

9 The user goes back to the Model Form
resource.

The system answers with a form
including a map for selecting a
geographical area, a calendar for
selecting a temporal extent, and a
drop-down menu for selecting the
input datasets. The form has also a
drop-down menu of predefined
scenarios.

10 The user defines a new scenario
(Replicability) selecting a new
location, time and/or input data and
runs the model.

The system answers with some
information and a link to the
generated dataset.

11 The user downloads the generated
datasets.

Fig. 5. The Reproducibility and Replicability application as a state machine.

Table 3
Reproducibility, Replicability use-case (offline alternative) description.

Step User System

1.4 (As in the Transparency use-case) (As in the Transparency use-case)
5 The user goes back and selects one

Model Implementation resource.
The system answers with
information about an
implementation of the model in
Python programming language and
links to a Git repository containing
the source code, and to a Model Form
resource for execution.

6 The user selects the Git link. The system directs the user to the Git
project landing page.

7 The user builds the model, prepares
a Docker container, moves it on a
cloud platform, and runs it.

P. Mazzetti and S. Nativi

Environmental Modelling and Software 176 (2024) 106002

10

model resource, but it is not properly part of the information about a
modelling service. In a service-oriented architecture, the provision of the
information useful for building and running a model on a given infra-
structure makes no sense, instead it perfectly fits with a ROA.

3.4.2. Service integration
The offline alternative use-case hides a major issue: the user is

required to do highly heterogeneous actions. While the online use-case
perfectly fits to a scientist, or a domain expert supporting a decision-
maker, the offline use-case, at step #7, requires that the user “builds
the model, prepares a Docker container, moves it on a cloud platform,
and runs it”. These actions are commonly beyond the competence of “a
scientist, or a domain expert supporting a decision-maker”. It is possible
to redefine the “user” meaning, e.g., referring to a team of people with
complementary expertise. Alternatively, there is the need to automate
(as much as possible) the tasks that are outside scientist’s expertise.
Interestingly, this is the typical situation where a dedicated “service” is
needed –i.e., the scientist needs a service to run the model. The service

can be offered by humans (e.g., a software expert, or a cloud adminis-
trator) or by machines. The second approach requires a service-oriented
architecture and that is the reason why a multi-style architecture better
meets the MaaR framework requirements. In general, every complex
action, which can be effectively automated, might be offered as a
dedicated service. To keep the advantages of a ROA, those services
should be offered through proper gateways that generate resource rep-
resentations from services.

This example proposes some of the functionalities that can greatly
improve a MaaR framework; they can be offered as services hidden
behind resource gateways. Fig. 6 shows the main components for an
enhanced MaaR framework that support the navigation paradigm for
user interaction, and advanced services for model access and execution.

Table 4 describes the components depicted in Fig. 6.

3.4.3. Synchronous vs asynchronous interaction patterns
The examples above suggest the adoption of a synchronous interac-

tion pattern with the user sending a request and waiting for the response

Fig. 6. Main components of an enhanced MaaR framework and relevant interfaces.

P. Mazzetti and S. Nativi

Environmental Modelling and Software 176 (2024) 106002

11

(“The system answers with some information and a link to the generated
dataset.“). For an infrastructure supporting model execution that could
have long run time and potential failures, an asynchronous interaction
pattern is likely necessary. Typically, this can be implemented by
generating an immediate response with the URL where the user can
access the resource, once it will be ready. More advanced implementa-
tions can make use of a ‘publish and subscribe’ interaction pattern.

3.4.4. Real-time and near-real-time interaction
Another important question is whether and how the proposed

framework is able to cope with the requirements of real-time (RT) and
near-real-time (NRT) communication that many computational models
have. Of course, if the RT/NRT requirement does not affect the Web
resource sharing – i.e., it is hidden in the service-oriented subsystem –
then it can be easily solved with dedicated interfaces. Instead, it may
seem a challenge if the RT/NRT communication must be supported by
the REST interfaces (e.g., for presenting real-time data to a user) since
HTTP as the most common Web protocol is a Request/Response proto-
col. However, it is worth noting that the REST architectural style does
not impose any specific communication protocol or format since they
can be both negotiated as part of the interface exchange. Referring to
Fig. 6, an example of interaction at the REST interface – e.g., already
supported by modern browsers - may be.

1. A logical resource with real-time content (e.g., “current temperature
at location X″) is identified by a URL, e.g., http://www/example.
org/xyz/42 which informs about the resource location.

2. The Web Client accesses the resource using the HTTP protocol since
the URL specifies ‘http’ as its ‘scheme’ portion (protocol negotiation)
(Berners-Lee et al., 2005).

3. Through the Resource Gateway, the Web Client receives a Web page
as the preferred resource representation. The response informs that
the content is HTML with the Content-Type header (format negoti-
ation). Then, the Web Client passes the HTML content to its internal
HTML viewer component.

4. The HTML page includes a JavaScript code identified by a ‘<SCRIPT
src = “text/javascript”>’ tag. Since code-on-demand is a REST
constraint, running client-side code is REST compliant. The Web
Client passes the code to its internal Javascript engine.

5. The Javascript code uses Websocket API to open a two-way
communication with the real-time data service (Melnikov and
Fette, 2011). Through Javascript the real-time data are presented to
the user as dynamic representation.

Note that this solution does not violate any REST constraints. In
particular, the interaction still happen at the Uniform Interface with a
logical resource identified by a URI and the interaction is Stateless, since
the representation does not depend on the previous client’s requests.

This is just an example of a possible REST-compliant solution using
available technologies. Many solutions can be adopted to support RT/
NRT communication, as far as the REST constraints, in particular the
Uniform Interface one, is respected. Other solutions could be based on
resource polling if there is not a strict RT requirement, or on the use of
different schemes (protocols) with dedicated clients.

3.4.5. Knowledge assets
The introduced resource categories enable general MaaR scenarios.

More sophisticated use cases may require further information concern-
ing the resources and their contextual role. These relationships, which
can be inferred by a human actor from some text description (e.g., the
model constraints), must be fully formalized for machine-to-machine
interactions. For instance, by reading a paper, a scientist can discover
that a model needs a ‘precipitation’ data input, and it was tested on the
Mediterranean geographic area. For a machine client, this information
needs to be formalized according to a Semantic Web approach - i.e.,
building a graph of resources (Mazzetti et al., 2022).

3.5. Engineering viewpoint

The Engineering viewpoint “is concerned with the infrastructure
required to support system distribution” (ISO). A MaaR framework can be
implemented as a three-tier architecture consisting of:

• Client tier: collecting all the nodes accessing resources and inter-
acting with them.

• Application tier: collecting all the nodes providing services needed
for building applications.

• Resource tier: collecting all the nodes that provide data and
computational resources.

Fig. 7 shows an example of deployment, assigning the relevant
functionalities to dedicated engineering components deployed on
different nodes. The schema depicts Clients (gathered in the Client tier),
Servers (offering access to data and model services gathered in the
Application tier), and finally the resource provision servers –collected in
the Resource tier. In this case a Client (PC) is equipped with Browser and
Viewer components to interact with Web Servers and Web Application
Servers. A Web Application Server accesses a Data Broker, which in
turns accesses Data Sources provided as services. Another Web Appli-
cation Server accesses the Model run functionalities, which are offered

Table 4
Main components of a MaaR framework.

Component Description

Web Client A Web Client provides the interaction with resources through
calls to the Uniform Interface.

Browser The Browser is the typical Web Client.
Viewer The Viewer is a component associated to a Browser and providing

the presentation of content (resources representations)
Specialized

Client
A Specialized Client is a Web Client tailored to specific usage
scenarios.

Resource A Resource is any kind of information accessible through a
Uniform Interface implementation

Resource
Gateway

A Resource Gateway is a façade component that exposes a
Uniform Interface, but it can interact with services in a service-
oriented environment. Fig. 6 shows two examples of Resource
Gateways: the first one exposes data that are accessible through a
data service, as resources; the second one allows running a model
as a resource calling the Model Controller.

Model
Controller

The Model Controller provides a service for running a model. It
associates the request to a workflow of data access and model
invocation and passes it to an Orchestrator for the execution.

Workflow
Builder

The Workflow Builder provides workflows associated to the
request managed by the Model Controller

Orchestrator The Orchestrator is the core component for model execution. It
coordinates the invocation of services needed to execute the
model run requested by a user.

Data Broker A Data Broker is a component that interacts with Data Sources
accessible as data services. It implements basic transformations
(change of format, reprojection, resampling, etc.) that facilitate
the model execution.

Data Source A Data Source provides datasets exposing a dedicated service
interface.
A Model Packager is able to recreate the software environment
required to run a model and provide it as a self-contained
package (e.g. container, virtual machine) for execution on an
external Cloud Platform.

Model Packager A Model Packager is able to recreate the software environment
required to run a model and provide it as a self-contained
package (e.g. container, virtual machine) for execution on an
external Cloud Platform.

Model Source A Model Source provides the model source code exposing a
dedicated service interface.

Platform Broker A Platform Broker provides a matchmaking service between user
needs and Cloud Platform offering.

Cloud Platform A Cloud Platform provides a set of services for model run (e.g.,
storage, elastic computing, container orchestration, etc.).

P. Mazzetti and S. Nativi

http://www/example.org/xyz/42
http://www/example.org/xyz/42

Environmental Modelling and Software 176 (2024) 106002

12

by a Model Controller, a Workflow Builder, an Orchestrator, and a
Model Packager. All these components are hosted on the same node for
tight coupling and/or better performances. A Web Server accesses da-
tabases that manage (static) resources such as Web pages, model code,
and structured data. According to the navigation paradigm, Clients
interact only with Web Application Servers and Web Servers –which act
as the gateways between the RESTful architecture and the service-
oriented architecture.

3.6. Technology viewpoint

The Technology viewpoint “is concerned with the choice of technology
to support system distribution” (ISO). The proposed MaaR framework is
based on a multi-style architecture including a RESTful subsystem as
well as a service-oriented subsystem, which offers advanced function-
alities to generate resources representations. Such solution can be
implemented by leveraging several mature and innovative technologies
that address the different aspects and provide the necessary capabilities.

3.6.1. Communication technologies
Fig. 7 shows a possible technological deployment to implement a

MaaR framework. The deployment includes nine different types of nodes
that provide different capabilities and interact for enabling different
MaaR use-cases. Interoperability at different levels is a major require-
ment. Referring to the Level of Conceptual Interoperability Model
(LCIM) (Tolk et al., 2007), it is possible to assume that the TCP/IP suite
provides Technical Interoperability (Level 1). In the RESTful subsystem,
Syntactic Interoperability (Level 2) can be achieved through the two
core Web protocols (URI, HTTP) for Identification (of resources) and
Interaction (with resources) respectively. In a MaaR framework, the
characteristic of exchanged resources (e.g., data and models) makes
necessary to support specific representation formats. Beside common
hypermedia and multimedia formats (e.g., XHTML, JPG, PNG, MP4,
etc.) clients should be able to present formats specifically defined for
representing models and geospatial data. The Code-on-Demand
constraint of the REST style allows enhancing client capabilities to

include data viewers (in or out of the browser) supporting the most
common formats like: GeoTiff, NetCDF, HDF, etc. Concerning data and
model descriptions, the work done by the major standardization bodies
in the geospatial domain (like ISO and OGC) provides a strong ground
for client/server interoperability. The Code-on-Demand constraint can
also help to overcome HTTP limitations, e.g. to better support asyn-
chronous interactions and real-time/near-real-time communication.

We can safely assume that URI (for service addressing) and HTTP (as
transport protocol for service payload) are also used in the service-
oriented subsystem. However, they are not sufficient and must be
complemented with service interface specifications. As anticipated in
the “Web service-oriented architectures” section, on the Web, there is no
agreement on the adoption of a unique service-oriented stack. Some
services are offered according to the SOAP suite, others through pro-
prietary specifications or light RPC-like APIs. This is also the situation
for geospatial data and model sharing, where services are mostly
exposed according to OGC specifications or by implementing pro-
prietary APIs.

Semantic Interoperability (Level 3) is not strictly necessary for a
MaaR framework. However, the availability of semantic information
would greatly improve MaaR use-cases. RDF, RDF schema, OWL, etc. are
mature specifications for knowledge encoding. In addition, many
knowledge bodies (i.e., ontologies, taxonomies, thesauri, vocabularies,
conventions) are available to express the semantics of geospatial, envi-
ronmental, and scientific domains. Many initiatives on standard speci-
fications have defined semantics aspects as part of their activities on the
description of data and services (Villa et al., 2017). However, a big effort
is still necessary to align and harmonize the existing knowledge bodies.
On the technological side, several RDF triple stores are available, both as
commercial and open-source tools, to store graphs representing domain
knowledge. The major obstacle in semantic interoperability does not
seem to be the lack of technology, but a governance issue: how to define
an effective process to collect, formalize, and encode the experts’
knowledge.

Pragmatic Interoperability (level 4) faces the same challenges of
semantic interoperability, but at a higher level. Pragmatic

Fig. 7. Example of components deployment.

P. Mazzetti and S. Nativi

Environmental Modelling and Software 176 (2024) 106002

13

interoperability deals with the possible use of data and models in a
specific context. This can be achieved by enriching the data and model
description with information about data quality and fitness-for-purpose.
In the last decades, several initiatives have been launched on the
description of geospatial data quality. However, there is not a general
agreement on the subset of information that is needed to qualify a
dataset or a model, as useable in a specific scientific context. Minimal
information should include spatial and temporal coverage and resolu-
tion, as well as accuracy. QualityML (Quality Indicators Dictionary and
Markup Language) is a profile of the ISO geospatial metadata standards
(e.g., ISO, 19157) providing a set of rules for precisely documenting
quality measure parameters. It includes semantics and vocabularies for
the quality concepts (Ninyerola et al., 2014), (QualityML).

A specific mention must be dedicated to uncertainty, which is a
fundamental information for many application use-cases, when geo-
spatial data and models are used in support of environmental decision-
making. Data and model description should provide information on the
uncertainty associated with data and how it propagates in models to
make possible estimating the uncertainty of a workflow output – a piece
of information that is a necessary for any effective decision. Uncertainty
description can be achieved by combining related metadata and external
annotations. UncertML (Uncertainty Markup Language) is “an XML
schema for describing uncertain information, which is capable of describing a
range of uncertain quantities” proposed as OGC Discussion paper (OGC,
2009). It defines a general conceptual model, that allows uncertainty to
be quantified in a variety of ways –i.e., realizations, statistics, and
probability distributions. UncertML has been experimented in different
contexts according to the Linked Data and Semantic Web approach
(Williams et al., 2008), in integration with sensors (Stasch et al., 2012),
with quality (Ninyerola et al., 2014), (QualityML) and provenance in-
formation (Car et al., 2015) and, more specifically, for the Model Web
(Bastin et al., 2013).

3.6.2. Mediation technologies
The proposed MaaR framework is intended to lower present barriers

to both users and providers. This is pursued by keeping interoperability
agreements at the minimum and avoiding making any assumption on
how services are offered. As a consequence, the service-oriented sub-
system must be considered (in principle) highly heterogeneous (Nativi
et al., 2004): data sources can publish data via many different protocols,
ranging from complex and powerful interfaces (such as WCPS) to light
and simple interfaces like shared folders; models can be published as
web services, as containers or virtual-machines, they can be even offered
as open-source code – along with the instructions to compile and run
them. Finally, data and models can be described and annotated ac-
cording to heterogeneous ontologies or knowledge bodies.

A solution to address heterogeneity without imposing heavy con-
straints to providers and/or users is the adoption of a mediation pattern
and the introduction of dedicated components that harmonize the
existing services (Nativi et al., 2013). A couple of functional components
(the Data Broker and the Model brokering framework, including Model
Controller, Workflow Builder, Model Packager and Orchestrator) were
introduced specifically to offer mediation and harmonization services at
syntactic level (Fig. 6).

The Data Broker should dialogue with servers, by interacting through
(international and community) open standards and widespread pro-
tocols for geospatial data discovery and access (such as OGC WxS, WPS,
OpenSearch, CKAN, etc.), but also with legacy systems, which make use
of proprietary protocols. On the other hand, the broker must expose
standard common interfaces to clients. Several data mediators already
exist. They are often part of more general data storage and processing
systems. For example, data cube or business intelligence solutions
typically include components dedicated to extract, transform and load
data (ETL process) for ingestion. However, they are tailored for their
target system and cannot be easily adapted to wider scenarios. In the
geospatial world, there are also stand-alone data mediation solutions.

For instance, NOAA ERDDAP provides a virtual data server offering
scientific data transformation capabilities through widespread in-
terfaces (i.e., OpenDAP, RESTful APIs) (NOAA). Likely, the most
comprehensive stand-alone solution is the Discovery and Access Broker
(DAB), adopted by GEO (Group of Earth Observation) for its Global
Earth Observation System of Systems (GEOSS) and by WMO for its WMO
Hydrological Observing System (WHOS) (Boldrini et al., 2022). The
DAB supports a great number of specifications and profiles for geospatial
data discovery and access, and it is deployable on scalable cloud in-
frastructures for high performances (CNR).

The Model broker is a more complicated component that should
interact with existing processing platforms, offered through heteroge-
neous service interfaces and APIs. In addition, it must create the pro-
cessing services for those models that are provided as source code. In this
case, the broker must build the software environment requested by the
model, and then deploy it to make it accessible as a service. Virtuali-
zation techniques provide mature technologies for creating a self-
contained virtual machine that can be hosted on different systems.
More recently, containerization technologies provided a lighter solution
than virtualization (Watada et al., 2019). In the last years, the Docker
technology became the de-facto standard for containerization. Most
commercial and open hosting providers and cloud platforms offer the
possibility to run Docker container images, and to configure and
orchestrate them with advanced services (e.g., Kubernetes). Assuming
that a Docker configuration file is provided along with the model source
code, a Model brokering framework could use it for compiling the
model, build the necessary Docker container image and deploy it for
execution on any available platform. For example, this is the approach
adopted by the Virtual Earth Laboratory (VLab) for experimenting the
Model Web implementation for data to knowledge use cases (Santoro
et al., 2016), (Santoro et al., 2020).

The Data and Model brokers address syntactic interoperability. They
do not make any use of semantic information. The Data Broker trans-
forms geospatial metadata and data without any reference to their
content; the Model brokering framework builds and run models inde-
pendently of what they do. In principle, a mediation and brokering
approach could be adopted for pursuing the semantic and pragmatic
interoperability. Instead of imposing a common ontology to the
knowledge providers, a dedicated Knowledge Broker might map
different ontologies on a metamodel. However, for the time being, the
semantic description of dataset and models is still limited, and it is not
possible to evaluate the validity of existing knowledge mediation
technologies.

3.6.3. At the boundary: the APIs role
Commonly, different users interact with the MaaR framework in

different ways. The description above focuses on a couple of use-cases –
i.e., transparency and replicability/reusability. It is useful to add
something about the interaction of other user categories with the
framework.

For resources providers, to be part of the system is made easy by the
openness of the MaaR framework. Providers can simply publish their
resources offering a basic representation of them through a Web Server.
For example, a model provider could make a model accessible as a
source code on a Web accessible Git repository and a data provider could
publish datasets through an existing Web Service. However, the full
integration of a resource in the MaaR framework requires some minimal
interoperability agreements. For example, a Git repository does not
require providing information about containerization (e.g., a Docker
configuration file). Still, the system openness and extensibility make
possible to integrate missing information, e.g., with a third-party adding
containerization information through a different Web Server.

Service providers are key actors in the life cycle of the framework
since they add value by supplying services that automate complex pro-
cedures. For example, a service provider could design, implement, and
maintain a Model brokering service, which is able to collect source code

P. Mazzetti and S. Nativi

Environmental Modelling and Software 176 (2024) 106002

14

and containerization instructions (from disparate sources) and automate
the compilation and running of models. Other providers might offer
knowledge services that enable semantic queries on harvested metadata.

Application developers build the applications, in the MaaR frame-
work. According to the REST architectural style, applications must be
designed as resource state machines, but they can use the services
available in the backend service-oriented subsystem.

In the last years, to facilitate Web application development, the
concept of API (Application Programming Interface) has gained
increasing attention. They are interfaces specifically implemented to
assist application developers.

In the context of the MaaR framework, it is important to distinguish
between REST interfaces and general unconstrained APIs and where
they are intended to be used in the proposed architecture. Referring to
the logical component diagram of the MaaR framework (Fig. 6), REST
interfaces must be exposed to MaaR framework consumers (e.g.,
browsers), while unconstrained APIs can be offered by those tools (like a
Model Controller or a Data Broker instance) that are useful to build
MaaR applications. Other interfaces might already be part of a service-
oriented subsystem with its own interoperability agreements. Fig. 6
highlights the role of Resource Gateways that are explicitly introduced
to expose a REST interface that enables the proper Web interaction.

4. Scientific and technical contribution

4.1. The MaaR framework as the basis for a digital ecosystem

The openness of the proposed architecture facilitates the participa-
tion of different users with different expertise, suggesting it as the core
framework for a potential digital ecosystem. Nativi and Craglia (2021),
and Nativi, Mazzetti and Craglia (Nativi et al., 2021) discuss how digital
ecosystems can be used to realize geospatial digital twins, identifying
challenges and opportunities; Annoni et al. (2023) propose the digital
ecosystem approach as one of the basis for the Digital Earth concept. The
MaaR framework is aligned with that vision and presents important
benefits in such a direction. Building a digital ecosystem around a MaaR
framework would allow starting a coevolution process that can enrich
the ecosystem with new resources, and in turn enable more and more
knowledge-generation processes –new users and providers can join the
ecosystem and provide new services and resources for knowledge gen-
eration (e.g. resources annotation services to address semantic inter-
operability, workflow schemes to build applications and to enable
models interoperability, brokers to face cloud infrastructures and plat-
forms interoperability).

Applying a multi-style approach has also a positive impact in terms
of governance because it adopts a clear separation-of-concern pattern.
Each actor can focus on his/her specific expertise, while the open ar-
chitecture allows new actors to enter on the stage. For example, a
knowledge provider could implement a graph database that experts can
fill in providing knowledge about existing resources –e.g., datasets and
scientific models. Therefore, the MaaR framework is a good candidate to
build a digital ecosystem with different “digital species” collaborating
and competing on the same digital environment and contributing to the
overall ecosystem service of knowledge generation (Nativi et al., 2021).
To face internal and external changes and evolutions, the ecosystem
governance must assure the invariance of few essential traits. The most
important invariant of the proposed MaaR framework is its multi-style
architecture –see the computational view of Fig. 6. It is important that
any system evolution (at the enterprise, information, computational,
engineering, and technological level) keep this trait unchanged, because
several advantages depend on the separation of the RESTful and
service-oriented subsystems. Without this separation, the architecture
would collapse into a mixed architecture (i.e., at most a layered archi-
tecture) with very few characteristics guaranteed.

4.2. Comparison with other solutions

The increasing importance of computational modelling in the sci-
entific practice, and the pervasiveness of the Web, has meant that
technological solutions have been proposed to support the sharing of
computational models in the Web. In some cases, full infrastructures for
data and model sharing have been implemented making use of wide-
spread Web technologies. Two noticeable examples are HydroShare in
the hydrology community, and the GEO Infrastructure with its Knowl-
edge Hub in the Earth Observation domain.

HydroShare: HydroShare is an open source, web-based hydrologic
information system developed for researchers, scientists, and data
managers in the hydrologic sciences to easily share and publish data,
models, scripts, and applications associated with research projects and
resulting manuscripts (Tarboton et al., 2024), (Essawy et al., 2018).
From the Model Web point-of-view, HydroShare is a valuable opera-
tional example of how, adopting a ROA, it is possible to share models as
resources and how current Web technologies can support it. As such,
HydroShare could gain benefits from the MaaR design that we present,
as a conceptual framework that helps to assure the viability of evolving
Web-based systems.

GEO Knowledge Hub: The GEO Knowledge Hub is an open-source
digital repository of open, authoritative, and reproducible knowledge
created by the Group on Earth Observations (GEO). In the GEO
Knowledge Hub, EO Applications are organized in Knowledge Packages
(Group on Earth Observations), (Carlos et al., 2022). Although the
support for Open Knowledge is the clear objective, the GEO Knowledge
Hub is currently a digital repository with limited support for model
sharing. The GEO Knowledge Hub and the GEOSS Platform for data
sharing could benefit from the proposed architectural framework to
evolve towards a Model Web implementation.

In recent years, some technologies have been proposed that can be
considered potential enablers for the implementation of the Model Web
vision. The most cited are: Virtual (Research) Environments, (Jupyter)
Notebooks, and data cubes. Some of them can be seen as complementary
technologies and easily contribute to a digital ecosystem that makes use
of the MaaR framework solution.

Virtual Environments: Over the past decades several information
technology initiatives have started to support what is now the Open
Science vision. They resulted in digital infrastructures variously termed
as: Collaborative e-Research Communities, Collaborative Virtual Envi-
ronments, Collaboratories, Science Gateways, Virtual Organisations,
Virtual Research Communities, Cyberinfrastructures, Virtual Research
Environments, Virtual Laboratories (Carusi and Reimer, 2010).
Although they are not synonyms, they all share the idea of facilitating
collaborative research –at least in some respects. As such, they are
commonly focused on a research community (along with its narrower
set of requirements, including usability and user-friendliness) that often
drives the effort to the development of specialized and closed systems,
based on Model-as-a-Tool approach.

Jupyter Notebooks: Project Jupyter (Jupyter Community) is a
spin-off of the original IPython software, with the objective of extending
its principle “across dozens of programming languages”. Among the
Project Jupyter products, the Jupyter Notebook is an interactive envi-
ronment where users can write code, interactively run it, and visualize
results. Jupyter Notebook uses include: “data cleaning and trans-
formation, numerical simulation, statistical modelling, data visualiza-
tion, machine learning, and much more”. Jupyter Notebooks and similar
solutions are now empowering cloud platforms and Virtual Research
Environments like Google Colab (Google Colab). They are excellent tools
for rapid development and (interactive) documentation, but as for Vir-
tual Environments these developments are suited to the specific needs of
a community. It would be interesting to integrate these notebook solu-
tions into a MaaR framework. This would be relatively easy since they
are designed as Web applications working in a Web environment. The
integration could also leverage the on-going efforts on the use of Jupyter

P. Mazzetti and S. Nativi

Environmental Modelling and Software 176 (2024) 106002

15

notebooks for environmental modelling (e.g., in the hydrology com-
munity (Choi et al., 2021)) and for interacting with data cubes (e.g., in
the Earth Observations community (Gomes et al., 2020)).

Data Cubes: data cubes recently emerged as a promising solution to
data and model integration and sharing. A data cube is a system allowing
to ingest datasets in a multi-dimensional array of values and access and
process them through a Web interface or API (Giuliani et al., 2019). Data
cubes allow serving Analysis Ready Data (ARD), because (in the data
cube) all dataset values are projected on the same coordinate reference
system and uniformly pre-processed. Google Earth Engine, Rasdaman,
and Open Data Cube are well-known examples of technologies imple-
menting the data cube principle. With some specificities they all enable
user to directly perform computations on data cubes and store pro-
cessing procedures. Although data cubes considerably lower entry bar-
riers for data users, they also have significant drawbacks and limitations
(Nativi et al., 2017). First, ARD is a potentially misleading concept since
readiness depends on the intended use of data. Therefore, it would be
more correct to distinguish among different usages: ARD for monitoring
and assessing landscape change, ARD for humanitarians, ARD for flash
floods, etc. The different types of “readiness” may have a great impact
–for example, for some user data are ready when cloud cover is removed,
but, for others, clouds are the subject of their study and should not be
removed. Even when pre-processing is limited to data projection,
interoperability can be an issue since data cubes covering different areas
may need adopting different coordinate reference systems –e.g.,
azimuthal projection for polar regions, and UTM for other regions. These
issues clearly limit the usability of a data cube beyond its intended
design. Therefore, for data sharing, data cubes can be considered an
evolution of the traditional concept of data servers, providing advanced
functionalities and increased performances through the ingestion and
transformation process. However, they still have the overall interoper-
ability issues of traditional data servers. Concerning scientific models,
data cubes have excellent performances for specific use-cases (e.g., time
series processing) due to the reorganization of data, but no specific
improvement on other use-cases. They adopt a MaaS approach and
moving a model from a data cube to another is not straightforward. Data
cubes can be integrated as data servers in the service-oriented subsystem
of a MaaR framework, but a full exploitation of their capabilities is
possible only if its data and models are fully exposed as resources.

5. Discussion

To share and run computational models, the proposed MaaR
framework presents several opportunities and some challenges, which
can be summarized in a Strength-Weaknesses-Opportunities-Threats
(SWOT) analysis.

5.1. Strengths

Clear separation-of-concerns: ‘User-driven’, ‘user-centric’, ‘code-
sign’, etc. are widespread terms commonly utilized to indicate the active
involvement of different stakeholders in the design and implementation
of a system. However, often, a clear identification and understanding of
system users lack. Not all users are equal, end-users are not (usually)
application providers who are themselves different from service pro-
viders. They have different expertise and needs, and some users may not
be aware of the ultimate technological solutions. Therefore, to effec-
tively engage users in a system design, it is useful to apply the software
pattern called “separation-of-concern”: each user can enter the system at
her/his own level of expertise and abstraction. The proposed multi-style
architecture allows data and model providers to easily focus on pub-
lishing resources on the Web, while service providers can only deal with
building complex systems for orchestrating access to resources; more-
over, application developers are able to create Web applications using
APIs, and, finally, end users must only interact with the system through
the well-known and user-friendly navigation paradigm.

Low entry barrier: In keeping with the separation-of-concern
pattern, the proposed MaaR framework has low entry barriers for the
different user categories. Data and model providers can easily publish
their resources by using a widespread platform –such as an existing data
server or source code repository, or a simple Web server. Service pro-
viders can build their services that orchestrate the access to the pub-
lished resources and host them on a commercial or public platform.
Software developers can build Web applications by using existing ser-
vices, often accessible through dedicated APIs. Finally, end users need
only a browser to run complex simulations which are hidden behind a
Web interface.

Extensibility: Due to its open architecture, which does not impose
major constraints for Web protocols compliance, the proposed MaaR
framework is greatly extensible. In principle, everyone may enrich the
resulting Model Web, by adding resources, annotating those already
existing, providing services to create added value, and building appli-
cations for specific users. This extensibility makes the MaaR framework
an ideal candidate for building a digital ecosystem –around the concept
of Model Web. As in any successful ecosystem, the different categories of
users can pursue their own advantage by sometimes adopting a collab-
orative approach and other times a competitive one, but, in any case,
enriching the digital environment and increasing the overall service of
the digital ecosystem – which is the generation of knowledge for
informed decision-making.

Viability: Due to its own disperse nature, the MaaR framework is
subject to changes, over time, for both internal reasons (i.e. changes of
the constituent digital infrastructures and software systems) and
external reasons (i.e. changes of the societal and policy needs, and the
many technological revolutions). Without any control, those changes
may result disruptive, making impossible for the framework to pursue its
intended objectives. In digital ecosystems, the essential role of the in-
variants consists in providing the capability to detect changes and
respond to those threatening the system in a manner consistent with the
objectives. Clearly identifying a major invariant as its multi-style ar-
chitecture, the MaaR framework adopts such approach, making it viable
– i.e., a system that can sustain itself over time.

5.2. Weaknesses

Multi-style architectures are fragile: The proposed MaaR frame-
work is based on a multi-style architecture. It assures the benefits of
resource-oriented (e.g., user-friendliness, openness) and service-
oriented architectures (e.g., capabilities), introducing an architectural
constraint which imposes to maintain an interface for separating the two
subsystems. This required invariant needs some governance mechanism
to intervene against violations.

Initial complexity of the digital environment: To result user-
friendly and have low entry barriers, the proposed framework must
already rely on a digital environment of online services, which com-
plement and give value to its functionalities. For instance, a model
provider can easily share a model as a source code because a system
administrator can annotate the model with instructions and build a
Docker container; moreover, a service provider can offer an orchestra-
tion service for building the Docker container and deploy it on a cloud
platform, etc. Then, to make everything work, an initial level of
complexity of the digital environment must be already present. This
means that some services should exist to make it possible to attract a
critical mass of users of different categories and trigger the coevolution
process. Fig. 6 shows what could be the minimal set of components to be
available in the earliest stage of a digital ecosystem for a Model Web – i.
e., data, model, and cloud brokers would allow to expose an open virtual
platform for data and model sharing.

Data and models availability: Lack of online data and models is a
general drawback impacting any potential sharing system. However,
this possible barrier is more important for a MaaR framework as it re-
quires (or at least encourage) the sharing of as much information as

P. Mazzetti and S. Nativi

Environmental Modelling and Software 176 (2024) 106002

16

possible on data and models – to understand whether they are exploit-
able resources for various use-cases implementation. To be effective, the
MaaR framework assumes that different kinds of data and models are
available and accessible on the Web. The MaaR framework tries
lowering interoperability barriers, but there are still many other barriers
to data and model sharing: attitudinal barriers (lack of awareness about
the importance of sharing for a more effective science); financial barriers
(lack of time and effort/funds to share resources); legal barriers (lack of
clear rules and policies on digital resource sharing); and technical bar-
riers (lack of portability of very complex digital resources –e.g., scien-
tific models).

Semantic interoperability: There is a weakness dealing with the
sound orchestration of the many different digital resources (available on
the Web) to obtain a useable piece of information or knowledge. Se-
mantic interoperability would significantly help addressing this issue,
but the semantic description of data and models is not yet mature
enough. Therefore, the control of scientific soundness of resources
orchestration must be done, by expert, in an offline way – e.g., by
defining a-priori workflow to be implemented through the MaaR
framework or by assessing the orchestration chain and result a-poste-
riori. In summary, the MaaR is an instrument to be supervised.

5.3. Opportunities

Beside the system strengths and weaknesses which are related to the
community to be built around it, the proposed MaaR framework can
leverage relevant opportunities in general:

Multi-disciplinarity: the global (societal, economic, and environ-
mental) changes that we are experimenting require to face great chal-
lenges (disaster resilience, climate change adaption, sustainable
development, etc.) which are inherently multidisciplinary. This requires
integrating data and models to implement sound processes for knowl-
edge generation. We can expect an extremely heterogeneous set of re-
sources –data encoded in different formats, models built in old
programming languages, resources described and annotated according
to heterogeneous ontologies and vocabularies. It is very unlikely that a
single solution (i.e., a tool or a standard) could be adopted to link them
all. The best approach is to accept their heterogeneity, enrich their
description (as much as possible), and adopt a mediation approach. The
proposed MaaR framework aims to provide an architecture that makes
possible to share and use heterogeneous resources in a common
environment.

Digital transformation: the technologies that have supported the
digital transformation of society provide the foundation for building a
MaaR framework – e.g., cloud platforms offer an affordable and ubiq-
uitous access to storage and computing services, and containerization
technologies provide the possibility to harmonize software environment
for model running. More specifically, the tools developed for the geo-
spatial domain (i.e., data and models brokers, datacubes, etc.) poten-
tially provide the core components for the digital environment in which
a geospatial digital ecosystem can evolve.

5.4. Threats

Threats for the proposed MaaR framework are mostly related to
governance aspects. The MaaR framework can be the basis for a viable
ecosystem, but as for any ecosystem, there is the need to set up an initial
digital environment, reach a critical mass of users and maintain that.
The setup of the digital environment is mostly a matter of time, effort,
and money – the utilization of mature technologies and widespread
solutions could minimize them. Instead, reaching and maintaining a
critical mass of users requires to face several specific challenges
including a) to make clear the overall value of the digital ecosystem; b)
to make clear the value of the digital ecosystem for each user category;
c) to overcome potential competition with other values – e.g., what if
some stakeholders see model sharing, with closed tools, as a potential

market/funding opportunity? The last point is important because the
MaaR framework tries to replicate the Web approach moving from static
to dynamic resources. Anyway, when the Web was born there was no
other option, and no stakeholder had any idea or opportunity to create
something alternative. Today, the Web is in place as a resource sharing
platform, and models sharing can follow different directions, depending
on conflicting interests.

6. Conclusions and future directions

This document provides a high-level description of a flexible
framework for sharing and running computational models in a distrib-
uted system. Unlike many existing examples of Web-based sharing sys-
tems, it adopts a top-down approach highlighting the importance of the
choice of a clear architectural style expressed through well-defined
constraints that assure a coherent evolution preserving the relevant
system characteristics. As such, it aims at assuring the viability of Web-
based systems leveraging innovative technologies (e.g., incorporating
them through services and resource gateways as in Fig. 6), being open to
other communities (e.g., allowing to introduce third-party brokers), and
fully supporting Open Knowledge demands (e.g., with components
dedicated to semantics for replicability and reusability). This is essential
to support the creation of a Model Web from perspective of a digital
ecosystem where requirements, actors, and even objectives can change
over time.

Although the proposed framework is mainly aimed at models rele-
vant to environmental applications, there are no specific constraints
preventing its adoption with other types of models or for other appli-
cation domains, including socio-economic models or algorithms for
generating composite indices.

The proposed framework is based on the Model-as-a-Resource
(MaaR) approach, where a model is considered an information
resource, which is an element of interest in the information space. This
means that a model is potentially something valuable in many possible
different scenarios. This contrasts with the Model-as-a-Service (MaaS)
approach, where a model is seen as an executable resource that plays a
valuable role only in a predefined scenario. The concept of the model as
a resource fits better into the Open Science view. It also responds more
to the needs of a transparent decision-making process, in which end
users need not only the result of model execution but also the infor-
mation that characterizes the model itself and the context in which it can
be used. A MaaR can be considered a self-documenting resource.

The proposed MaaR framework is based on the REST architectural
style, which is the original architectural style of the Web. The choice is
based on the proven capability of such a style to support scalability and
evolvability. However, we recognized that running a model has high-
level requirements and that non-expert users need assistance. There-
fore, the proposed MaaR framework adopts a multi-style architecture,
integrating a RESTful subsystem and a service-oriented one. Dedicated
components (gateways) help mapping service interactions with RESTful
applications. It is essential to clearly define the boundaries between the
service-oriented and the resource-oriented sub-systems.

We argued that the multi-style architecture of the MaaR framework
fits perfectly to realize the scenario of ever-changing digital ecosystems.
For this reason, the framework is an important tool to realize the original
vision of a Model Web of representational models driven by theory and
data. There are still some open challenges, however these are not mainly
of a technical nature, but related to the governance aspects of how to
build an initial digital environment and how to reach a critical mass of
participating users.

For application developers, the multi-style architectural constraint
means: “build your applications as lightweight Web applications”. As a
result, this suggested designing proper interfaces to service providers for
supporting developers –and facilitate mashups. Moreover, these rec-
ommendations are perfectly plausible for their targets for reasons
beyond their architectural nature. Application developers may follow

P. Mazzetti and S. Nativi

Environmental Modelling and Software 176 (2024) 106002

17

the recommendation to “build your applications as lightweight Web
applications” not because it is an architectural constraint, but because it
is a way to build a user-friendly application and so make it a success.
Service providers may want to provide APIs just because they could
make their product more appealing for developers.

Once the digital ecosystem is established and active, those who
violate the constraint (e.g.; by publishing resources with closed tools,
offering services with an integrated client, or building applications with
non-Web clients) would put themselves out of the ecosystem; their re-
sources, services, or applications could not be integrated with the others
in the ecosystem – likely, they would give small value to providers and
users.

Future works include the study of the application of the MaaR
framework to the specificities of: a) data-driven models based on Ma-
chine Learning to support their full lifecycle (from the training phase to
the deployment) and b) digital twins to support their connectivity with
input and output data streams.

CRediT authorship contribution statement

Paolo Mazzetti: Writing – review & editing, Writing – original draft,
Supervision, Project administration, Investigation, Funding acquisition,
Conceptualization. Stefano Nativi: Writing – review & editing, Super-
vision, Project administration, Investigation, Funding acquisition,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

The research leading to these results has received funding under a
research contract from the DG Joint Research Centre of the European
Commission (in the framework of the “Study on Assessing & Proposing
an Implementation Architecture” of the Destination Earth initiative: an
AA between JRC and DG CNECT), from ESA under contract n.
4000138128/22/I/AG (DAB4GPP), from the European Union’s Digital
Europe Programme under Grant Agreement n. 101083927 (GREAT).

The authors would like to thank Michael Lutz and Max Craglia (from
DG JRC) for the continued discussion we have had on these issues and
Nicholas Spadaro (from DG JRC), Mattia Santoro, and Massimiliano
Olivieri (from CNR-IIA) for the help in implementing proof-of-concepts.

References

Annoni, A., et al., 2023. Digital earth: yesterday, today, and tomorrow. Int. J. Digital
Earth 16 (1), 1022–1072. https://doi.org/10.1080/17538947.2023.2187467.

Barth, A., 2011. HTTP State Management Mechanism,” Internet Engineering Task Force,
Request for Comments RFC 6265. https://doi.org/10.17487/RFC6265.

Barton, C.M., et al., 2020. Call for transparency of COVID-19 models. Science 368
(6490), 482–483. https://doi.org/10.1126/science.abb8637.

Bastin, L., et al., 2013. Managing Uncertainty in Integrated Environmental Modelling:
the UncertWeb Framework, vol. 39. Environmental Modelling & Software,
pp. 116–134. https://doi.org/10.1016/j.envsoft.2012.02.008.

Baumann, P., 2010. The OGC web coverage processing service (WCPS) standard.
GeoInformatica 14 (4), 447–479. https://doi.org/10.1007/s10707-009-0087-2.

Berners-Lee, T., Hendler, J., Lassila, O., 2001. The Semantic Web. Scientific American.
Berners-Lee, T., Fielding, R.T., Masinter, L.M., 2005. “Uniform Resource Identifier (URI):

Generic Syntax,” Internet Engineering Task Force. Request for Comments RFC 3986.
https://doi.org/10.17487/RFC3986.

Boldrini, E., Nativi, S., Pecora, S., Chernov, I., Mazzetti, P., 2022. Multi-scale
hydrological system-of-systems realized through WHOS: the brokering framework.

Int. J. Digital Earth 15 (1), 1259–1289. https://doi.org/10.1080/
17538947.2022.2099591.

Braun, M.L., Ong, C.S., 2018. Open science in machine learning. In: Stodden, V.,
Leisch, F., Peng, R.D. (Eds.), Implementing Reproducible Research, first ed.
Chapman and Hall/CRC, Boca Raton, FL.

Car, N., Cox, S., Fitch, P., 2015. Associating Uncertainty with Datasets Using Linked Data
and Allowing Propagation via Provenance Chains. Apr, p. 4392.

Carlos, F., De Salvo, P., Queiroz, G.R., Franziskakis, F., Glaves, H., 2022. Sharing and
Preserv. GEO Commun. Appl. Through the GEO Knowledge Hub 2022. IN41A-02.

Carusi, A., Reimer, T., 2010. Virtual Research Environment Collaborative Landscape
Study [Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=1
0.1.1.404.6517&rep=rep1&type=pdf.

Chen, M., et al., 2020. Position paper: open web-distributed integrated geographic
modelling and simulation to enable broader participation and applications. Earth
Sci. Rev. 207, 103223 https://doi.org/10.1016/j.earscirev.2020.103223.

Choi, Y.-D., et al., 2021. Toward Open and Reproducible Environmental Modeling by
Integrating Online Data Repositories, Computational Environments, and Model
Application Programming Interfaces, vol. 135. Environmental Modelling & Software,
104888. https://doi.org/10.1016/j.envsoft.2020.104888.

CNR, “GEODAB - GEO Discovery and Access Broker,” GEODAB. [Online]. Available: http
s://www.geodab.net/.

Erl, T., 2005. Service-Oriented Architecture (SOA): Concepts, Technology, and Design.
Prentice Hall, Upper Saddle River, NJ.

Essawy, B.T., et al., 2018. Integrating Scientific Cyberinfrastructures to Improve
Reproducibility in Computational Hydrology: Example for HydroShare and
GeoTrust, vol. 105. Environmental Modelling & Software, pp. 217–229. https://doi.
org/10.1016/j.envsoft.2018.03.025.

European Commission, 2018. Directorate General for Research and Innovation., Turning
FAIR into Reality: Final Report and Action Plan from the European Commission Expert
Group on FAIR Data. LU: Publications Office. Feb. 03, 2021. [Online]. Available:
https://data.europa.eu/doi/10.2777/1524.

European Commission Directorate-General for Research & Innovation, “Guidelines on
FAIR Data Management in Horizon 2020.” Jul. 2016. [Online]. Available: http://ec.
europa.eu/research/participants/data/ref/h2020/grants_manual/hi/oa_pilot/h
2020-hi-oa-data-mgt_en.pdf..

Fecher, B., Friesike, S., 2014. Open science: one term, five schools of thought. In:
Bartling, S., Friesike, S. (Eds.), Opening Science. Springer International Publishing,
Cham. https://doi.org/10.1007/978-3-319-00026-8.

R. T. Fielding, “REST APIs must be hypertext-driven,” Untangled. [Online]. Available:
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven..

Fielding, R.T., 2000. Architectural styles and the design of network-based software
architectures. Nov. 21, 2019. [Online]. Available: https://www.ics.uci.edu/~field
ing/pubs/dissertation/top.htm.

Fielding, R.T., Taylor, R.N., 2002. Principled design of the modern Web architecture.
ACM Trans. Internet Technol. 2 (2), 115–150. https://doi.org/10.1145/
514183.514185.

Fielding, R.T., et al., 2017. Reflections on the REST architectural style and ‘principled
design of the modern web architecture’ (impact paper award). In: Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, in ESEC/FSE
2017. Association for Computing Machinery, New York, NY, USA, pp. 4–14. https://
doi.org/10.1145/3106237.3121282.

Flaishans, J., et al., 2016. Environmental Models as a Service: Enabling Interoperability
through RESTful Endpoints and API Documentation. International Congress on
Environmental Modelling and Software [Online]. Available: https://scholarsarchive.
byu.edu/iemssconference/2016/Stream-A/18.

Foerster, T., Brühl, A., Schäffer, B., 2011. RESTful web processing service. In:
Proceedings of the 14th AGILE International Conference on Geographic Information
Science [Online]. Available: https://agile-online.org/conference_paper/cds/agile
_2011/contents/pdf/shortpapers/sp_137.pdf.

Frigg, R., Hartmann, S., 2020. Models in science. In: Zalta, E.N. (Ed.), The Stanford
Encyclopedia Of Philosophy, Spring 2020, Metaphysics Research Lab. Stanford
University. Jul. 06, 2021. [Online]. Available: https://plato.stanford.edu/arch
ives/spr2020/entries/models-science/.

Geller, G.N., Melton, F., 2008. Looking forward: applying an ecological model web to
assess impacts of climate change. Biodiversity 9 (3–4), 79–83. https://doi.org/
10.1080/14888386.2008.9712910.

Geller, G.N., Turner, W., 2007. The model web: a concept for ecological forecasting. In:
2007 IEEE International Geoscience and Remote Sensing Symposium. IEEE,
Barcelona, Spain, pp. 2469–2472. https://doi.org/10.1109/IGARSS.2007.4423343.

GEO, 2021. GEO statement on open knowledge [Online]. Available: https://www.earth
observations.org/documents/geoweek2021/GEO-17-4.1_GEO%20Statement%20on
%20Open%20Knowledge.pdf.

Giuliani, G., Masó, J., Mazzetti, P., Nativi, S., Zabala, A., 2019. Paving the way to
increased interoperability of earth observations data cubes. Data 4 (3), 113. https://
doi.org/10.3390/data4030113.

Gomes, V., Queiroz, G., Ferreira, K., 2020. An overview of platforms for big earth
observation data management and analysis. Rem. Sens. 12 (8), 1253. https://doi.
org/10.3390/rs12081253.

Google Colab.” Accessed: Mar. 30, 2023. [Online]. Available: https://research.google.co
m/colaboratory/faq.html..

Granell, C., Díaz, L., Schade, S., Ostländer, N., Huerta, J., 2013. Enhancing Integrated
Environmental Modelling by Designing Resource-Oriented Interfaces, vol. 39.
Environmental Modelling & Software, pp. 229–246. https://doi.org/10.1016/j.
envsoft.2012.04.013.

Group on Earth Observations, “GEO Knowledge Hub,” GEO. [Online]. Available: https://
gkhub.earthobservations.org/.

P. Mazzetti and S. Nativi

https://doi.org/10.1080/17538947.2023.2187467
https://doi.org/10.17487/RFC6265
https://doi.org/10.1126/science.abb8637
https://doi.org/10.1016/j.envsoft.2012.02.008
https://doi.org/10.1007/s10707-009-0087-2
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref6
https://doi.org/10.17487/RFC3986
https://doi.org/10.1080/17538947.2022.2099591
https://doi.org/10.1080/17538947.2022.2099591
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref9
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref9
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref9
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref10
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref10
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref11
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref11
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.404.6517&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.404.6517&rep=rep1&type=pdf
https://doi.org/10.1016/j.earscirev.2020.103223
https://doi.org/10.1016/j.envsoft.2020.104888
https://www.geodab.net/
https://www.geodab.net/
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref16
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref16
https://doi.org/10.1016/j.envsoft.2018.03.025
https://doi.org/10.1016/j.envsoft.2018.03.025
https://data.europa.eu/doi/10.2777/1524
http://ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/oa_pilot/h2020-hi-oa-data-mgt_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/oa_pilot/h2020-hi-oa-data-mgt_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/oa_pilot/h2020-hi-oa-data-mgt_en.pdf
https://doi.org/10.1007/978-3-319-00026-8
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://www.ics.uci.edu/%7efielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/%7efielding/pubs/dissertation/top.htm
https://doi.org/10.1145/514183.514185
https://doi.org/10.1145/514183.514185
https://doi.org/10.1145/3106237.3121282
https://doi.org/10.1145/3106237.3121282
https://scholarsarchive.byu.edu/iemssconference/2016/Stream-A/18
https://scholarsarchive.byu.edu/iemssconference/2016/Stream-A/18
https://agile-online.org/conference_paper/cds/agile_2011/contents/pdf/shortpapers/sp_137.pdf
https://agile-online.org/conference_paper/cds/agile_2011/contents/pdf/shortpapers/sp_137.pdf
https://plato.stanford.edu/archives/spr2020/entries/models-science/
https://plato.stanford.edu/archives/spr2020/entries/models-science/
https://doi.org/10.1080/14888386.2008.9712910
https://doi.org/10.1080/14888386.2008.9712910
https://doi.org/10.1109/IGARSS.2007.4423343
https://www.earthobservations.org/documents/geoweek2021/GEO-17-4.1_GEO%20Statement%20on%20Open%20Knowledge.pdf
https://www.earthobservations.org/documents/geoweek2021/GEO-17-4.1_GEO%20Statement%20on%20Open%20Knowledge.pdf
https://www.earthobservations.org/documents/geoweek2021/GEO-17-4.1_GEO%20Statement%20on%20Open%20Knowledge.pdf
https://doi.org/10.3390/data4030113
https://doi.org/10.3390/data4030113
https://doi.org/10.3390/rs12081253
https://doi.org/10.3390/rs12081253
https://research.google.com/colaboratory/faq.html
https://research.google.com/colaboratory/faq.html
https://doi.org/10.1016/j.envsoft.2012.04.013
https://doi.org/10.1016/j.envsoft.2012.04.013
https://gkhub.earthobservations.org/
https://gkhub.earthobservations.org/

Environmental Modelling and Software 176 (2024) 106002

18

Imbert, C., 2017. Computer simulations and computational models in science. In:
Bertolotti, T., Magnani, L. (Eds.), Springer Handbook of Model-Based Science, first
ed. Springer Berlin Heidelberg, New York, NY.

ISO, “ISO/IEC 10746-1:1998(en), Information technology — Open Distributed
Processing — Reference model: Overview — Part 1.” Accessed: Jul. 20, 2021.
[Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso-iec:10746:-1:ed-1:v1:
en..

Jupyter Community, “Project Jupyter.” Accessed: Aug. 04, 2021. [Online]. Available:
https://www.jupyter.org.

Laniak, G.F., et al., 2013. Integrated Environmental Modeling: A Vision and Roadmap for
the Future, vol. 39. Environmental Modelling & Software, pp. 3–23. https://doi.org/
10.1016/j.envsoft.2012.09.006.

Lastovetsky, A.L., Gaissaryan, S.S., 1994. An algebraic approach to semantics of
programming languages. Theor. Comput. Sci. 135 (2), 267–288. https://doi.org/
10.1016/0304-3975(94)00022-0.

Lloyd, E.A., Winsberg, E. (Eds.), 2018. Climate Modelling: Philosophical and Conceptual
Issues, first ed. Springer International Publishing, Cham. https://doi.org/10.1007/
978-3-319-65058-6. Imprint: Palgrave Macmillan, 2018.

Mazzetti, P., Nativi, S., Caron, J., 2009. RESTful implementation of geospatial services
for Earth and Space Science applications. Int. J. Digital Earth 2 (S1), 40–61. https://
doi.org/10.1080/17538940902866153.

Mazzetti, P., et al., 2022. Knowledge formalization for earth science informed decision-
making: the GEOEssential knowledge base. Environ. Sci. Pol. 131, 93–104. https://
doi.org/10.1016/j.envsci.2021.12.023.

Melnikov, A., Fette, I., 2011. “The WebSocket Protocol,” Internet Engineering Task
Force, vol. 6455. Request for Comments RFC. https://doi.org/10.17487/RFC6455.

Moschovakis, Y.N., 1993. Sense and Denotation as Algorithm and Value,” Logic
Colloquium ’90. ASL Summer Meeting, Helsinki, pp. 210–249.

Nativi, S., Craglia, M., 2021. Destination Earth: Ecosystem Architecture Description. LU:
Publications Office of the European Union. Aug. 06, 2021. [Online]. Available: htt
ps://data.europa.eu/doi/10.2760/08093.

Nativi, S., et al., 2004. Differences among the data models used by the geographic
information systems and atmospheric science communities. In: Proceedings
American Meteorological Society - 20th Interactive Image Processing Systems
Conference [Online]. Available: https://ams.confex.com/ams/84Annual/techprogra
m/paper_73229.htm.

Nativi, S., et al., 2007. Predicting the impact of climate change on biodiversity: a GEOSS
scenario. In: The Full Picture. Group on Earth Observations, pp. 262–278.

Nativi, S., et al., 2009a. A technology framework to analyse the Climate Change impact
on biodiversity species distribution. In: EGU General Assembly Conference Abstracts,
p. 3436.

Nativi, S., Mazzetti, P., Saarenmaa, H., Kerr, J., Tuama, É.Ó., 2009b. Biodiversity and
climate change use scenarios framework for the GEOSS interoperability pilot
process. Ecol. Inf. 4 (1), 23–33. https://doi.org/10.1016/j.ecoinf.2008.11.002.

Nativi, S., Mazzetti, P., Geller, G.N., 2012. Environmental model access and
interoperability: the GEO Model Web initiative. Environ. Model. Software. https://
doi.org/10.1016/j.envsoft.2012.03.007.

Nativi, S., Craglia, M., Pearlman, J., 2013. Earth science infrastructures interoperability:
the brokering approach. IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 6 (3),
1118–1129. https://doi.org/10.1109/JSTARS.2013.2243113.

Nativi, S., Mazzetti, P., Craglia, M., 2017. A view-based model of data-cube to support
big earth data systems interoperability. Big Earth Data 1 (1–2), 75–99. https://doi.
org/10.1080/20964471.2017.1404232.

Nativi, S., Mazzetti, P., Craglia, M., 2021. Digital ecosystems for developing digital twins
of the earth: the destination earth case. Rem. Sens. 13 (11), 2119. https://doi.org/
10.3390/rs13112119.

Nielsen, H., Fielding, R.T., Berners-Lee, T., 1996. Hypertext Transfer Protocol – HTTP/
1.0,” Internet Engineering Task Force, Request for Comments RFC 1945. https://doi.
org/10.17487/RFC1945.

Ninyerola, M., et al., 2014. QualityML: a Dictionary for Quality Metadata Encoding,
10452.

NOAA, “ERDDAP,” ERDDAP Web Site. Accessed: Aug. 04, 2021. [Online]. Available: http
s://www.ncei.noaa.gov/erddap/index.html..

OASIS Open, 2006. Reference model for service oriented architecture 1.0 [Online].
Available: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa
-rm.

OASIS Open, “Standards,” OASIS Open. [Online]. Available: https://www.oasis-open.
org/standards/..

Odifreddi, P., 1989. Classical recursion theory: the theory of functions and sets of natural
numbers, 2 vols. In: Studies in Logic and the Foundations of Mathematics, vol. 125.
North-Holland, Amsterdam ; New York : New York, N.Y., USA, p. 143.

OGC, “OGC WPS 2.0.2 Interface Standard Corrigendum 2.” Mar. 05, 2015. [Online].
Available: http://docs.opengeospatial.org/is/14-065/14-065.html..

OGC, 2009. “Uncertainty Markup Language (UnCertML).” Apr. 08 [Online]. Available:
https://portal.ogc.org/files/?artifact_id=33234.

OGC, OpenGIS Web Processing Service. Jun. 08, 2007. [Online]. Available: https
://portal.ogc.org/files/?artifact_id=24151..

Roy Fielding on Versioning, Hypermedia, and REST, InfoQ. Accessed: Jun. 25, 2021.
[Online]. Available: https://www.infoq.com/articles/roy-fielding-on-versioning/..

Salvendy, G., Karwowski, W. (Eds.), 2010. Introduction to Service Engineering. John
Wiley & Sons, Hoboken, N.J.

Sansone, S.-A., et al., 2019. FAIRsharing as a community approach to standards,
repositories and policies. Nat. Biotechnol. 37 (4) https://doi.org/10.1038/s41587-
019-0080-8. Art. no. 4.

Santoro, M., Nativi, S., Mazzetti, P., 2016. Contributing to the GEO Model Web
Implementation: A Brokering Service for Business Processes, vol. 84. Environmental
Modelling & Software, pp. 18–34. https://doi.org/10.1016/j.envsoft.2016.06.010.

Santoro, M., Mazzetti, P., Nativi, S., 2020. The VLab framework: an orchestrator
component to support data to knowledge transition. Rem. Sens. 12 (11), 1795.
https://doi.org/10.3390/rs12111795.

Stasch, C., Jones, R., Cornford, D., Kiesow, M., Williams, M., Pebesma, E., 2012.
“Representing Uncertainties in the Sensor Web,” Presented at the Sensing a Changing
World 2012. Wageningen, The Netherlands [Online]. Available: https://www.wur.
nl/upload_mm/e/4/9/5d9cd704-8472-421e-acb7-ab9723bfc5e7_Stasch_etal.pdf.

Tarboton, D.G., et al., 2024. HydroShare Retrospective: Science and Technology
Advances of a Comprehensive Data and Model Publication Environment for the
Water Science Domain, vol. 172. Environmental Modelling & Software, 105902.
https://doi.org/10.1016/j.envsoft.2023.105902.

Tolk, A., Diallo, S., Turnitsa, C., 2007. Applying the levels of conceptual interoperability
model in support of integratability, interoperability, and composability for system-
of-systems engineering. J. Syst., Cybern. Informatics 5 (5), 65–74.

Villa, F., Balbi, S., Athanasiadis, I.N., Caracciolo, C., 2017. Semantics for interoperability
of distributed data and models: foundations for better-connected information.
F1000Res 6, 686. https://doi.org/10.12688/f1000research.11638.1.

W3C, 2004. Architecture of the world wide web, volume one. Nov. 21, 2019. [Online].
Available: https://www.w3.org/TR/webarch/.

W3C, “RDFa Core 1.1 - Third Edition.” Accessed: Jun. 25, 2021. [Online]. Available: htt
ps://www.w3.org/TR/rdfa-core/.

Watada, J., Roy, A., Kadikar, R., Pham, H., Xu, B., 2019. Emerging trends, techniques and
open issues of containerization: a review. IEEE Access 7, 152443–152472. https://
doi.org/10.1109/ACCESS.2019.2945930.

Web Hypertext Application Technology Working Group (WHATWG), “HTML Standard.”
Accessed: Aug. 08, 2022. [Online]. Available: https://html.spec.whatwg.org/mult
ipage/.

Wilkinson, M.D., et al., 2016. The FAIR Guiding Principles for scientific data
management and stewardship. Sci. Data 3 (1), 160018. https://doi.org/10.1038/
sdata.2016.18.

Williams, M., Cornford, D., Bastin, L., 2008. “Describing and Communicating Uncertainty
within the Semantic Web,” Presented at the 7th International Semantic Web
Conference. Karlsruhe, Germany [Online]. Available: http://eprints.aston.ac.
uk/10038/.

52North, 52North 52◦ North, “WPS 2.0 REST API TAMIS,” 52north website. [Online].
Available: https://52north.github.io/tamis-rest-api/..

ISO/TC 211 - Geographic information/Geomatics, ISO. Accessed: Dec. 11, 2023.
[Online]. Available: https://www.iso.org/committee/54904.html.

OGC Standards, OGC. Accessed: Dec. 11, 2023. [Online]. Available: https://www.ogc.
org/standards/..

QualityML. Accessed: Aug. 03, 2021. [Online]. Available: http://www.qualityml.org/..

P. Mazzetti and S. Nativi

http://refhub.elsevier.com/S1364-8152(24)00063-X/sref36
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref36
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref36
https://www.iso.org/obp/ui/#iso:std:iso-iec:10746:-1:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:10746:-1:ed-1:v1:en
https://www.jupyter.org
https://doi.org/10.1016/j.envsoft.2012.09.006
https://doi.org/10.1016/j.envsoft.2012.09.006
https://doi.org/10.1016/0304-3975(94)00022-0
https://doi.org/10.1016/0304-3975(94)00022-0
https://doi.org/10.1007/978-3-319-65058-6
https://doi.org/10.1007/978-3-319-65058-6
https://doi.org/10.1080/17538940902866153
https://doi.org/10.1080/17538940902866153
https://doi.org/10.1016/j.envsci.2021.12.023
https://doi.org/10.1016/j.envsci.2021.12.023
https://doi.org/10.17487/RFC6455
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref46
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref46
https://data.europa.eu/doi/10.2760/08093
https://data.europa.eu/doi/10.2760/08093
https://ams.confex.com/ams/84Annual/techprogram/paper_73229.htm
https://ams.confex.com/ams/84Annual/techprogram/paper_73229.htm
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref49
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref49
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref50
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref50
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref50
https://doi.org/10.1016/j.ecoinf.2008.11.002
https://doi.org/10.1016/j.envsoft.2012.03.007
https://doi.org/10.1016/j.envsoft.2012.03.007
https://doi.org/10.1109/JSTARS.2013.2243113
https://doi.org/10.1080/20964471.2017.1404232
https://doi.org/10.1080/20964471.2017.1404232
https://doi.org/10.3390/rs13112119
https://doi.org/10.3390/rs13112119
https://doi.org/10.17487/RFC1945
https://doi.org/10.17487/RFC1945
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref57
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref57
https://www.ncei.noaa.gov/erddap/index.html
https://www.ncei.noaa.gov/erddap/index.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
https://www.oasis-open.org/standards/
https://www.oasis-open.org/standards/
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref61
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref61
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref61
http://docs.opengeospatial.org/is/14-065/14-065.html
https://portal.ogc.org/files/?artifact_id=33234
https://portal.ogc.org/files/?artifact_id=24151
https://portal.ogc.org/files/?artifact_id=24151
https://www.infoq.com/articles/roy-fielding-on-versioning/
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref66
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref66
https://doi.org/10.1038/s41587-019-0080-8
https://doi.org/10.1038/s41587-019-0080-8
https://doi.org/10.1016/j.envsoft.2016.06.010
https://doi.org/10.3390/rs12111795
https://www.wur.nl/upload_mm/e/4/9/5d9cd704-8472-421e-acb7-ab9723bfc5e7_Stasch_etal.pdf
https://www.wur.nl/upload_mm/e/4/9/5d9cd704-8472-421e-acb7-ab9723bfc5e7_Stasch_etal.pdf
https://doi.org/10.1016/j.envsoft.2023.105902
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref73
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref73
http://refhub.elsevier.com/S1364-8152(24)00063-X/sref73
https://doi.org/10.12688/f1000research.11638.1
https://www.w3.org/TR/webarch/
https://www.w3.org/TR/rdfa-core/
https://www.w3.org/TR/rdfa-core/
https://doi.org/10.1109/ACCESS.2019.2945930
https://doi.org/10.1109/ACCESS.2019.2945930
https://html.spec.whatwg.org/multipage/
https://html.spec.whatwg.org/multipage/
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
http://eprints.aston.ac.uk/10038/
http://eprints.aston.ac.uk/10038/
https://52north.github.io/tamis-rest-api/
https://www.iso.org/committee/54904.html
https://www.ogc.org/standards/
https://www.ogc.org/standards/
http://www.qualityml.org/

	The model-as-a-resource paradigm for geoscience digital ecosystems
	Software and data availability
	1 Introduction
	1.1 Scientific computational models
	1.2 Open science

	2 Background
	2.1 Software architectural styles for implementing distributed systems
	2.2 Resource-oriented and service-oriented software architectures
	2.2.1 Resource and service-orientation on the web
	2.2.2 Web service-oriented architectures
	2.2.3 Web resource-oriented architectures
	2.2.4 Comparing resource and service-oriented architectures

	2.3 Mixed vs. multi-style architectures
	2.4 Sharing of computational models
	2.4.1 Model sharing on the web
	2.4.2 Model-sharing with service-oriented architectures: model-as-a service
	2.4.3 Model-sharing with resource-oriented architectures: model-as-a-resource

	3 System architecture for a MaaR framework
	3.1 A model-as-a-resource framework to realize the Model Web vision
	3.2 Enterprise viewpoint
	3.2.1 Scenarios
	3.2.2 Actors

	3.3 Information viewpoint
	3.3.1 Model resources
	3.3.1.1 Models as algorithms

	3.3.2 Other model resources
	3.3.3 Data resources
	3.3.4 MaaR framework main resources

	3.4 Computational viewpoint
	3.4.1 Building applications: hypermedia as the engine of application state
	3.4.1.1 A transparency use-case
	3.4.1.2 Reproducibility, replicability use-case
	3.4.1.3 Reproducibility, replicability use-case (offline alternative)

	3.4.2 Service integration
	3.4.3 Synchronous vs asynchronous interaction patterns
	3.4.4 Real-time and near-real-time interaction
	3.4.5 Knowledge assets

	3.5 Engineering viewpoint
	3.6 Technology viewpoint
	3.6.1 Communication technologies
	3.6.2 Mediation technologies
	3.6.3 At the boundary: the APIs role

	4 Scientific and technical contribution
	4.1 The MaaR framework as the basis for a digital ecosystem
	4.2 Comparison with other solutions

	5 Discussion
	5.1 Strengths
	5.2 Weaknesses
	5.3 Opportunities
	5.4 Threats

	6 Conclusions and future directions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

