

International Society for Digital Earth

Understanding the Regularity and Privacy Issues in Human Mobility Research

Song Gao Geospatial Data Science Lab University of Wisconsin-Madison

Email: song.gao@wisc.edu https://geods.geography.wisc.edu/

Human Mobility Analytics: Data Sources and Regularity

Data-Driven Human Mobility Research

GeoDS Lab @UW-Madison

• Telematics data

Regularity in daily human mobility patterns

GeoDS Lab @UW-Madison

• Daily Routines

Underlying mechanism

- Needs/Constraints
 - Work
 - Rest
 - Social
- Flexibility
 - Occupation
 - Exploration
 - Preferences

Mobility Motif: Location-based Motif

- Network Representation for Daily Routines
 - Node
 - Visited locations
 - Directed Edge
 - Trip between locations
- Motif
 - Discard node attributes
 - Name, dwelling time, number of visits
 - Discard edge attributes
 - Number of trips, distance, travel time
 - Focus on the network structure

Mobility Motif: Activity-based Motif

- Modification
 - Node

lacksquare

- Activity type (i.e., in-home, work, and others)
- Directed Edge
 - Transition between activities

Cao, J., Li, Q., Tu, W., & Wang, F. (2019). Characterizing preferred motif choices and distance impacts. Plos one, 14(4), e0215242.

Regularity in daily human mobility patterns

- Typical Users
 - User 1: 19 weekdays within one month

Regularity in daily human mobility patterns

- Regularity in Location Motif
- Regularity in Activity Motif
- Regularity in Routing

Feature		Description		
Location- related	NLoc	The number of unique stay locations		
	F _{Loc}	The frequency of the most frequently visited location		
	P _{Loc} (Home)	The percentage of the total dwelling time at home		
	P _{Loc} (Work)	The percentage of the total dwelling time at work place		
	NTrip	The total number of trips		
	Nod	The number of unique OD pairs		
	FOD	The frequency of the most frequently traveled OD pair		
	P _{Trip} (Home)	The percentage of home-related trips		
	P _{Trip} (Comm)	The percentage of commuting trips		
	SLoc	The actual entropy introduced in (Song et al., 2010)		
Motif-related	N _{LM}	The number of unique LMs		
	FLM	The frequency of the most frequently used LM		
	SLM	The entropy of LMs		
	N _{AM}	The number of unique AMs		
	FAM	The frequency of the most frequently used AM		
	SAM	The entropy of AMs		
Route-related	F _R	The frequency of the most frequently used route		
	SR	The entropy of all routes, weighted by OD frequency		

Ji, Gao, et al. Rethinking the regularity in mobility patterns of personal vehicle drivers: A multi-city comparison using a feature engineering approach. (2023), *Transactions in GIS*.

User Profiling/Clustering

Transactions in GIS

Rethinking the regularity in mobility patterns of personal vehicle drivers: A multi-city comparison using a feature engineering approach

Yuhan Ji¹Song Gao^{1,*}Tam Huynh²ChrisScheele²James Triveri²Jacob Kruse¹CollinBennett²Yicheng Wen²

Cluster 1: Gig drivers Cluster 2: Homebodies Cluster 3: Movers Cluster 4: Typical drivers Cluster 5: Work-focused commuters

GeoAl for Location Privacy Protection

Privacy Concerns

 Geoprivacy refers to an individual's rights to prevent the disclosure of personal sensitive locations including but not limit to their home, workplace, daily activities, or travel trips.

GeoDS Lab @UW-Madison

Gao, S., Rao, J., Liu, X., Kang, Y., Huang, Q., & App, J. (2019). Exploring the effectiveness of geomasking techniques for protecting the geoprivacy of Twitter users. *Journal of Spatial Information Science*, 2019(19), 105-129.

Geoprivacy Protection Methods

Grouping and mixing trajectories to achieve k-anonymity (SIGSPATIAL, 2012)

Geomasking (IJGIS, 2023)

Overview of the LSTM-TrajGAN Model

• RQ1: How effective is a generative GeoAI model using deep learning in protecting the trajectory creators from being re-identified? (i.e., privacy protection effectiveness)

GeoDS Lab @UW-Madison

• RQ2: Can the synthetic trajectories preserve the semantic features (spatial-temporal-thematic characteristics) compared to real trajectories? (i.e., utility)

Rao, J., Gao, S., Kang, Y., & Huang, Q. (2020). LSTM-TrajGAN: A Deep Learning Approach to Trajectory Privacy Protection. *In the Proceedings of the 11th International Conference on Geographic Information Science (GIScience 2021), No. 12; pp. 12:1–12:17.* DOI: 10.4230/LIPIcs.GIScience.2021.12

Trajectory Encoding Model

GeoDS Lab @UW-Madison

LSTM-TrajGAN Loss Function

 $TrajLoss(y^r, y^p, t^r, t^s) = \alpha L_{BCE}(y^r, y^p) + \beta L_s(t^r, t^s) + \gamma L_t(t^r, t^s) + cL_c(t^r, t^s)$

https://github.com/GeoDS/LSTM-TrajGAN

Trajectory Generation

GeoDS Lab @UW-Madison

The privacy protection effectiveness of different privacy protection methods on the Trajectory User Linking task.

Method	ACC@1	ACC@5	Macro-F1	Macro-P	Macro-R
Original	0.938	0.976	0.925	0.937	0.927
RP (Spatial Only)	0.777	0.934	0.758	0.806	0.764
RP (Spatial-Temporal)	0.668	0.888	0.640	0.711	0.654
Gaussian (Spatial Only)	0.561	0.832	0.522	0.573	0.537
Gaussian (Spatial-Temporal)	0.486	0.766	0.431	0.488	0.470
LSTM-TrajGAN	0.459	0.722	0.381	0.429	0.428

Note: RP stands for Random Perturbation; Gaussian stands for Gaussian Geomasking

Privacy-Preserving Machine Learning

GeoDS Lab @UW-Madison

Build trust in model training and inference

(Xu, Baracaldo, and Joshi, 2021, arXiv)

Federated Learning-Based Framework

GeoDS Lab @UW-Madison

Rao, J., Gao, S., Li, M., & Huang, Q. (2021) A privacy-preserving framework for location recommendation using decentralized collaborative machine learning. *Transactions in GIS*, 25(3), 1153-1175.

Conclusion

- GeoDS Lab @UW-Madison
- Understanding the regularity in human mobility patterns
- Protecting location privacy with GeoAl approaches

Thank you!

1

https://geods.geography.wisc.edu

Twitter: @gissong

