

Wetland Mapping and Change Analysis in Canada Using Advanced Al and Remote Sensing Techniques

Meisam Amani, PhD, PEng

Remote Sensing Team Lead

WSP, Canada

Agenda

- Introduction
 - Wetlands
 - Remote Sensing
- Study Area and Datasets
- Methodologies
- Results Examples

Wetlands Services

- Flood control
- Erosion control
- Water purification
- Shoreline protection
- Soil and water conservation
- Carbon storage
- Recreation and tourist activities

Kidneys of Environment

Remote Sensing

Measurement of object properties from some platforms like:

Handheld device

Ground-based

Survey vehicle

Helicopter

Drone

Airplane Satellite

Wetland Classification Methods

Traditional (e.g., field work)

- Expensive
- Time-consuming
- Not practical for large areas
- No practical for wetland change detection and monitoring
- Accessibility issues
- Necessary for remote sensing methods

Remote Sensing

- Cost effective
- Real-time data
- Large coverage
- Repetitive observation
- No limitation regarding the accessibility

Wetlands in Canada

- Canadian Wetland Classification System (CWCS)
- It was estimated that ~13% of Canada is covered by wetlands (Royal Canadian Geographical Society, 2012)
- Over the last decades, human activities and climate change have posed a serious threat to wetlands in Canada
- It's highly required to map and monitor wetlands changes in Canada

Study Area and Datasets

· In-situ data

- GPS points of the locations of different wetlands
- Drone high resolution imagery
- 50% for training and 50% for validation

Remote sensing data

- Optical satellites: Worldview-2, RapidEye, Landsat-8/9, Sentinel-2
- Radar: Sentinle-1, Radarsat-1/2, ALOS-1/2, TerraSAR-X
- DEM data

Methodologies

More than 30 publications:

https://scholar.google.ca/citations?user=RbHBNbYAAAAJ&hl=en

Object-based Change Analysis

Object-based Wetland
Map for T(i:)

Class Difference

Class Difference

Object-based Change Map

Pixel-based Mosaic Image with 14 Layers for T(i)

Image Difference

Object-based Change Map

Fixel-based Change Map

Fixel-based Change Map

Image Difference

Image Difference

Image Difference

Image Difference

Image Difference

Image Map

Fixel-based Change Map

Fixel-based Change Map

Methodologies

- Best results: a combination of optical, radar, and DEM data
- Pixel-based vs. object-based image analysis
- · AI models: Random Forest classification algorithm
- Single-date vs. multi-temporal datasets
- Up to 90% overall classification accuracy
- Employing cloud platforms like GEE

100 90

80

70

60

50

40 30

20

10

Avalon

Grand Falls-Windsor

Results Examples: Wetland Classification in Newfoundland

Deer Lake Gros Morne Goose Bay

Bog

Fen

Marsh

Urban

Sand

Results Examples: First Canada-Wide Wetland Map

Snack & Learn Webinar

Results Examples: First Canada-Wide Wetland Map

Class	Area (km²)	% of Canada
Wetland		
Bog	375,416	3.71
Fen	671,344	6.64
Marsh	1,190,960	11.78
Swamp	853,734	8.44
Shallow Water	559,344	5.53
Total (wetland)	3,650,798	36.1
Non-wetland		
Deep Water	673,563	6.66
Forest	1,565,731	15.46
Grassland	1,062,753	10.51
Cropland	562,112	5.60
Barren	2,265,214	22.40
Snow	330,617	3.30
Total (non-wetland)	6,459,990	63.94

Results Examples: Wetland Change Assessment in Alberta

Base wetland map

Changed: 18% (~130,000km2)

Unchanged: 82% (~542,000km2)

More changes over the north and north-east regions, as well as oil sands (e.g., 23% in Cold Lake)

Results Examples: Wetland Change Assessment in Alberta

Wetland Loss: 22,000 km2 (Wetlands to Forest and Grassland/Shrubland)

Wetland Gain: 24,000 km2 (Forest has changed to wetlands, especially Swamp and Fen)

Area: Forest (209,000Km2), Fen (84,000km2)

Large transitions between Grassland ←→ Cropland (29,000km2), Forest→Wetlands (18,000km2), Fen→Forest (6,000km2)

Questions?

Dr. Meisam Amani Remote Sensing Team Lead WSP, Canada

Email: Meisam.amani@wsp.com

For more information, see https://scholar.google.ca/citations?user=RbHBNbYAAAAJ&hl=en

in **y** f ⊙ **D**