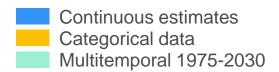
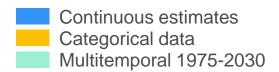
Evaluating the quality of the Global Human Settlement Layer R2023A

Johannes H. Uhl


European Commission Joint Research Centre (JRC) Unit E.1 - GHSL

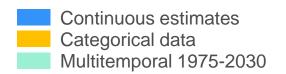
The 13th ISDE International Lectures 11/11/2024

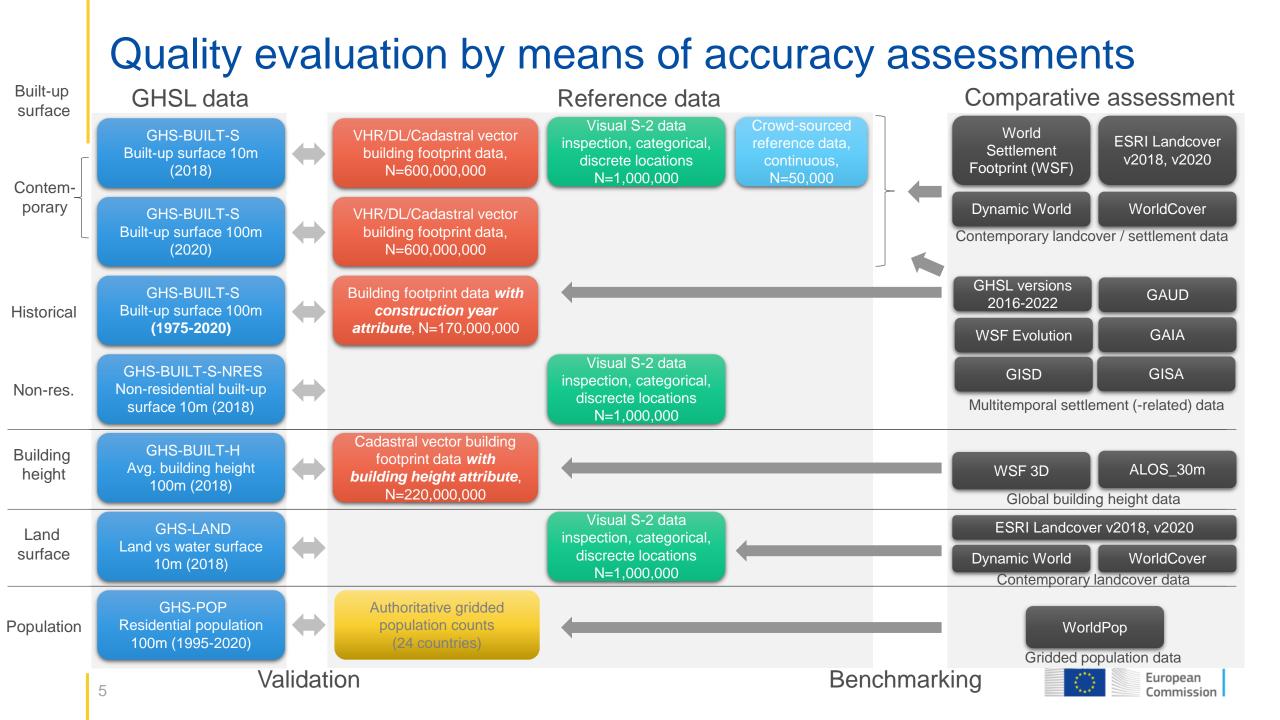
Global Human Settlement Layer (GHSL) data ecosystem


Dataset name	Variable	Spatial resolution			Year	Nature of the data	
DataSet Hairie	variable	10 m	0 m 100 m 1000 m		Teal	Hatare of the data	
GHS-BUILT-S	Total built-up surface [sqm]	•			2018	Measured	
GHS-BUILT-S	Total built-up surface [sqm]		•	•	1975-2030	Measured, modelled	
GHS-BUILT-H	Average building height [m]		•		2018	Measured	
GHS-BUILT-V	Total building volume [m3]		•	•	1975-2030	Derived	
GHS-BUILT-S-NRES	Non-residential built-up surface [sqm]	•	•	•	1975-2030, 2018	Measured,modelled	
GHS-BUILT-V-NRES	Non-residential building volume [m3]		•	•	1975-2030	Derived	
GHS-POP	Resident population		•	•	1975-2030	Measured, modelled	
GHS-LAND	Land surface [sqm]	•	•	•	2018	Measured	
GHS-SMOD	Degree of Urbanisation settlement model			•	1975-2030	Derived	
GHS-MSZ	Morphological Settlement Zone	•			2018	Derived	
GHS-BUTYPE	Built-up typology		•		2018	Derived	

Global Human Settlement Layer (GHSL) data ecosystem

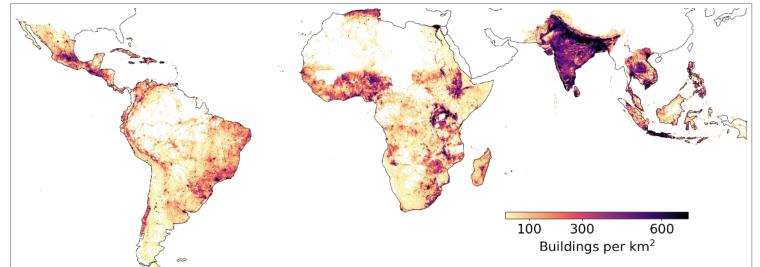
Dataset name	Variable	Spat	ial resol	ution	Year	Nature of the data	Validatod
DataSet Haille	variable	10 m	100 m	1000 m	rear	Nature of the data	vanuateu
GHS-BUILT-S	Total built-up surface [sqm]	•			2018	Measured	\checkmark
GHS-BUILT-S	Total built-up surface [sqm]		•	•	1975-2030	Measured, modelled	
GHS-BUILT-H	Average building height [m]		•		2018	Measured	\checkmark
GHS-BUILT-V	Total building volume [m3]		•	•	1975-2030	Derived	
GHS-BUILT-S-NRES	Non-residential built-up surface [sqm]	•	•	•	1975-2030, 2018	Measured, modelled	\checkmark
GHS-BUILT-V-NRES	Non-residential building volume [m3]		•	•	1975-2030	Derived	
GHS-POP	Resident population		•	•	1975-2030	Measured, modelled	\checkmark
GHS-LAND	Land surface [sqm]	•	•	•	2018	Measured	\checkmark
GHS-SMOD	Degree of Urbanisation settlement model			•	1975-2030	Derived	
GHS-MSZ	Morphological Settlement Zone	•			2018	Derived	
GHS-BUTYPE	Built-up typology		•		2018	Derived	




Global Human Settlement Layer (GHSL) data ecosystem

Dataset name	Mariable	Spatial resolution			Vasa	Notine of the date	Validatad	
	Variable		100 m 1000 m		Year	Nature of the data	Validated	
GHS-BUILT-S	Total built-up surface [sqm]	•			2018	Measured	\checkmark	
GHS-BUILT-S	Total built-up surface [sqm]		•	•	1975-2030	Measured, modelled	\checkmark	
GHS-BUILT-H	Average building height [m]		•		2018	Measured	\checkmark	
GHS-BUILT-S-NRES	Non-residential built-up surface [sqm]	•	•	•	1975-2030, 2018	Measured, modelled		
GHS-POP	Resident population		•	•	1975-2030	Measured, modelled		
GHS-LAND	Land surface [sqm]	•	•	•	2018	Measured	\checkmark	

Evaluating the quality of *measured* and *modelled primary* components of the GHSL ecosystem.


Reference data Built-up GHSL data Reference data Comparative assessment surface Visual S-2 data Crowd-sourced World **GHS-BUILT-S** VHR/DL/Cadastral vector **ESRI** Landcover inspection, categorical, reference data. Settlement Built-up surface 10m building footprint data, v2018, v2020 discrete locations Footprint (WSF) (2018)N=600,000,000 N=1,000,000N=50,000 Contemporary Dynamic World WorldCover **GHS-BUILT-S** VHR/DL/Cadastral vector Built-up surface 100m building footprint data, Contemporary landcover / settlement data (2020)N=600,000,000 **GHSL** versions **GHS-BUILT-S** Building footprint data with **GAUD** 2016-2022 Built-up surface 100m construction year Historical (1975-2020) *attribute*, N=170,000,000 **GAIA WSF** Evolution Visual S-2 data **GHS-BUILT-S-NRES GISD** GISA inspection, categorical, Non-residential built-up Non-res. discrecte locations Multitemporal settlement (-related) data surface 10m (2018) N=1,000,000 Cadastral vector building **GHS-BUILT-H** Building footprint data with Avg. building height ALOS 30m WSF 3D height building height attribute, 100m (2018) N=220,000,000 Global building height data Visual S-2 data ESRI Landcover v2018, v2020 **GHS-LAND** Land inspection, categorical, Land vs water surface surface discrecte locations Dynamic World WorldCover 10m (2018) N=1,000,000Contemporary landcover data **GHS-POP** Authoritative gridded Residential population population counts WorldPop Population 100m (1995-2020) Gridded population data Benchmarking Validation European Commission

Reference data I: CNN-based, VHR-derived building

footprint data

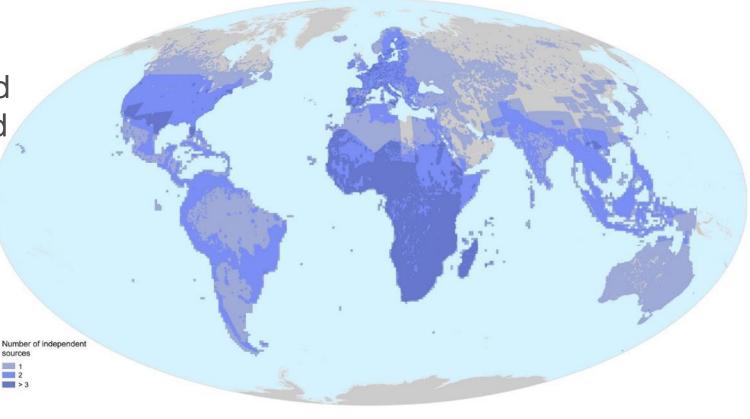
Source:https://github.com/microsoft/GlobalMLBuildingFootprints

Microsoft: 1.4B buildings from Bing Maps imagery between 2014 and 2024

Source:https://github.com/microsoft/GlobalMLBuildingFootprints

Google: The dataset contains 1.8 billion building detections, across an inference area of 58M km² within Africa, South Asia, South-East Asia, Latin America and the Caribbean.

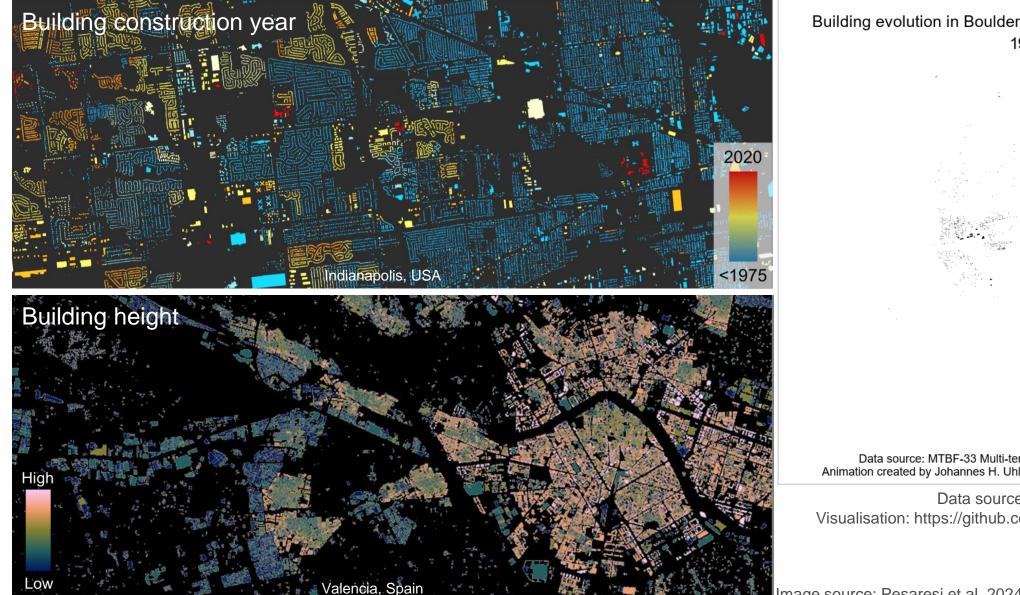
Reference data I: CNN-based, VHR-derived building footprint data

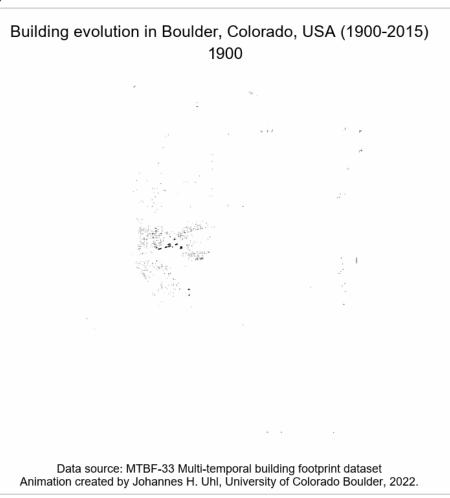

 Sources: Microsoft, Google, Ecopia

 Reference building footprint data were rasterized into 1m, 10m and 100m grids, aligned to GHSL grid

 Analytical unit: blocks of 25x25km, globally distributed

 Agreement calculated at blocklevel


 Agreement metric: R-accuracy, MAE



Reference data II: Cadastral building footprint data attributed with construction year / height information

Data source: MTBF-33. Visualisation: https://github.com/johannesuhl/shapefile2gif

Image source: Pesaresi et al. 2024

Reference data II: Cadastral building footprint data attributed with construction year information

MTBF-33 EUBUCCO

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

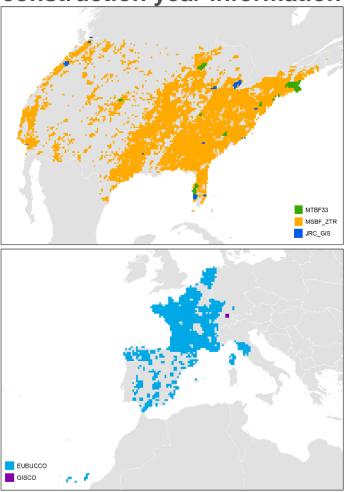
Data Article

MTBF-33: A multi-temporal building footprint dataset for 33 counties in the United States (1900 – 2015)

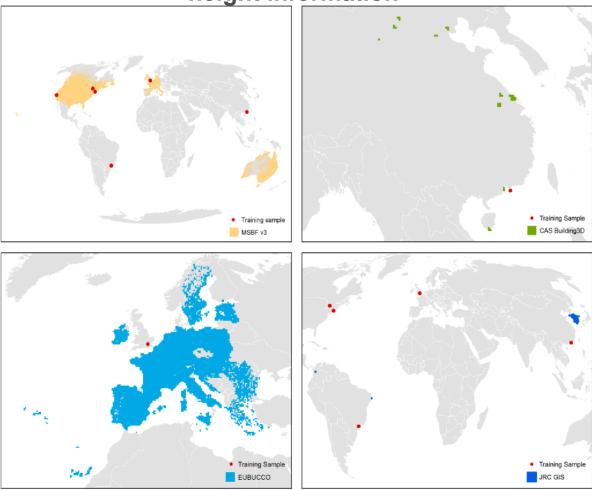
Johannes H. Uhla,b,c,*, Stefan Leykb,c

Source: Uhl and Leyk (2022)

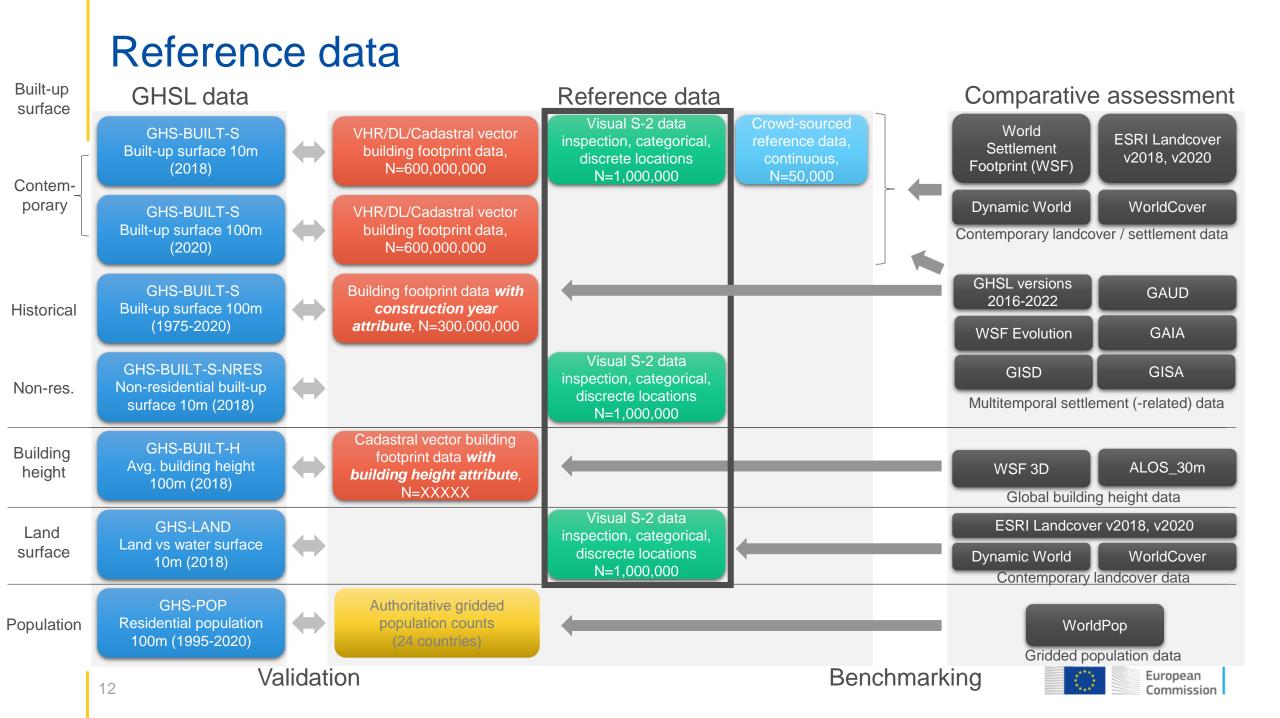
Source: https://eubucco.com/


^a University of Colorado Boulder, Cooperative Institute for Research in Environmental Sciences (CIRES) 216 UCB, Boulder, CO-80309, USA

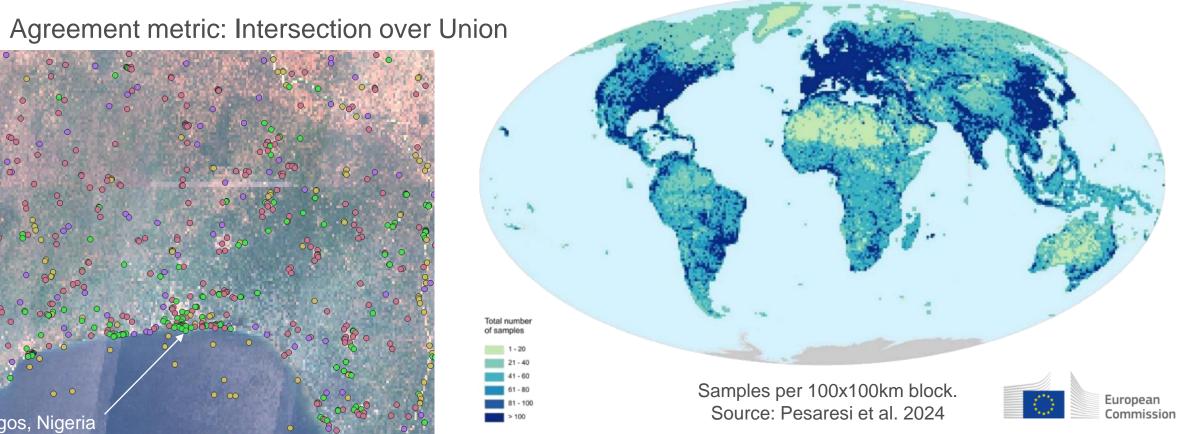
^b University of Colorado Boulder, Institute of Behavioral Science, 483 UCB, Boulder, CO-80309, USA

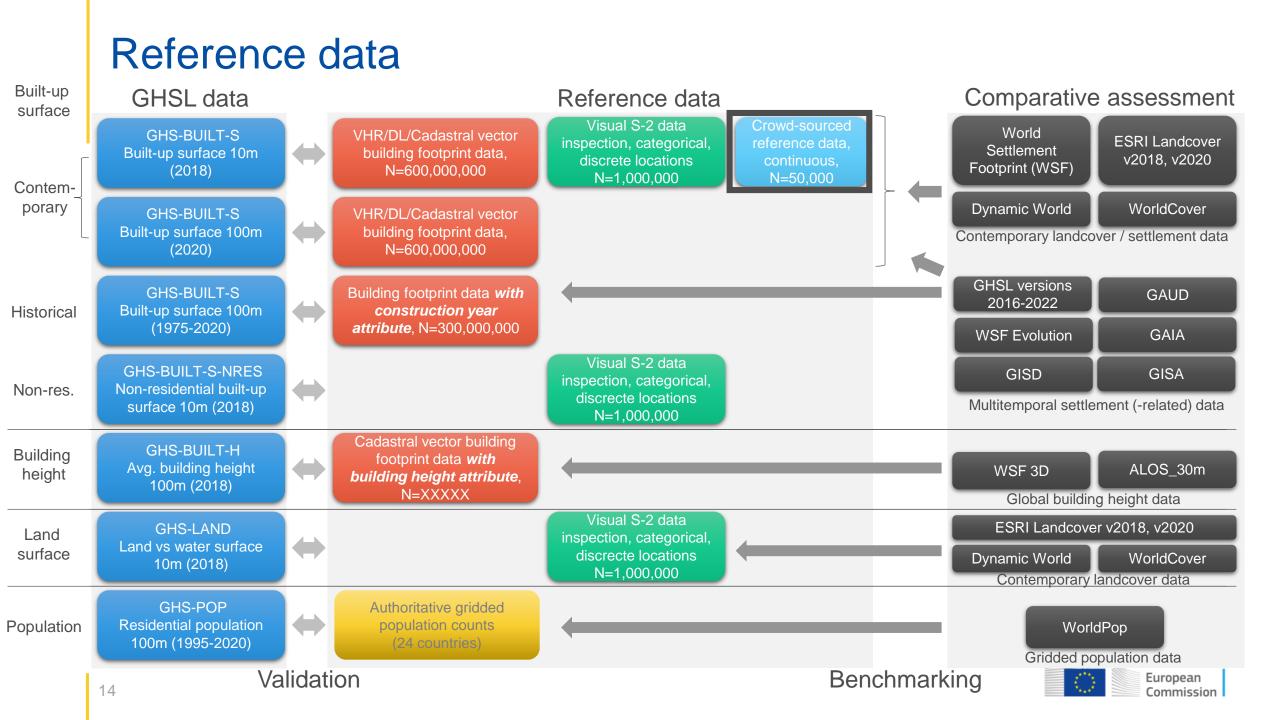

^c University of Colorado Boulder, Department of Geography, 260 UCB, Boulder, CO-80309, USA

Reference data II: Cadastral building footprint data attributed with construction year / height information


Coverage of BF data with construction year information

Coverage of BF data with height information





Reference data III: Discrete, visual S-2 data inspection, categorical information (N=1,000,000)

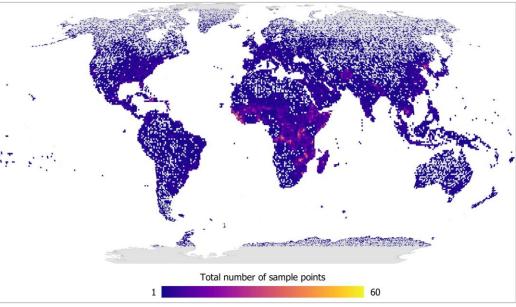

- Manually annotated from S-2 data, multiple human inspection, incl. decision confidence information
- Residential, Non-residential built-up, non-built-up, land vs. water

Lagos, Nigeria

Reference data IV: Crowd-sourced built-up surface data

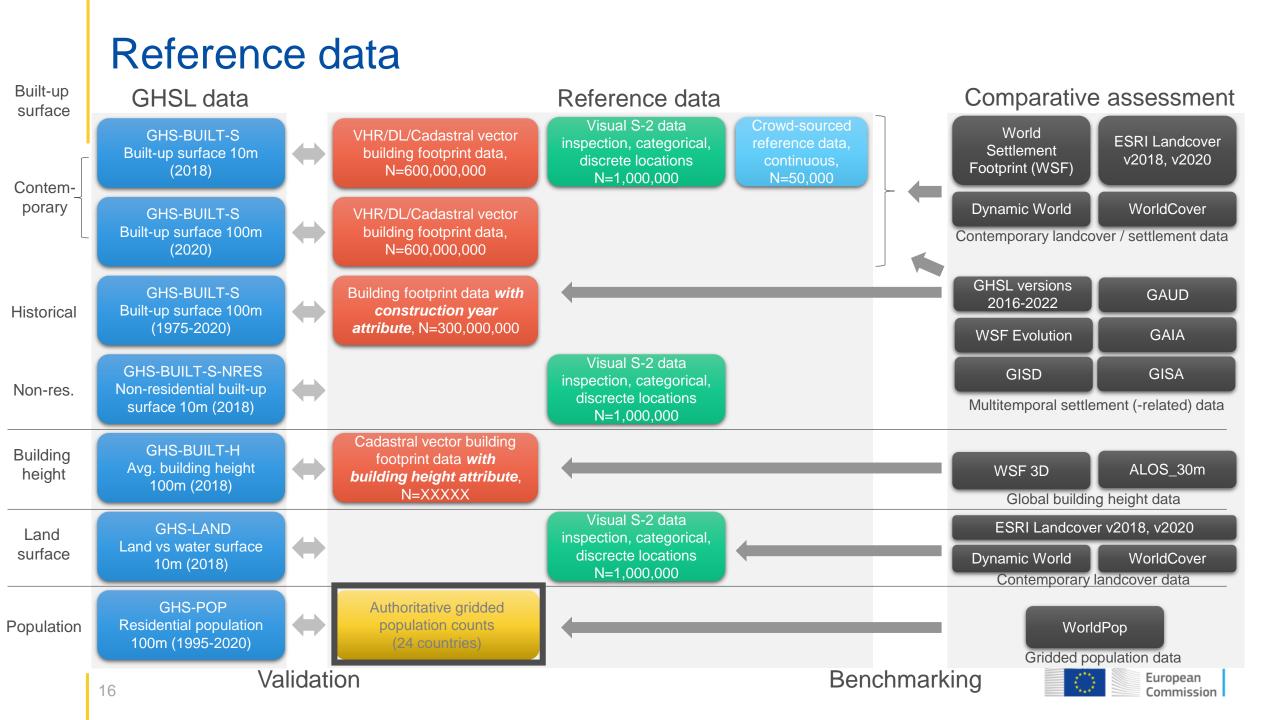
- 50,000 sample locations
- Sample = 80x80m block with 64 cells
- Data allows to measure continuous built-up surface at each sample area

scientific data

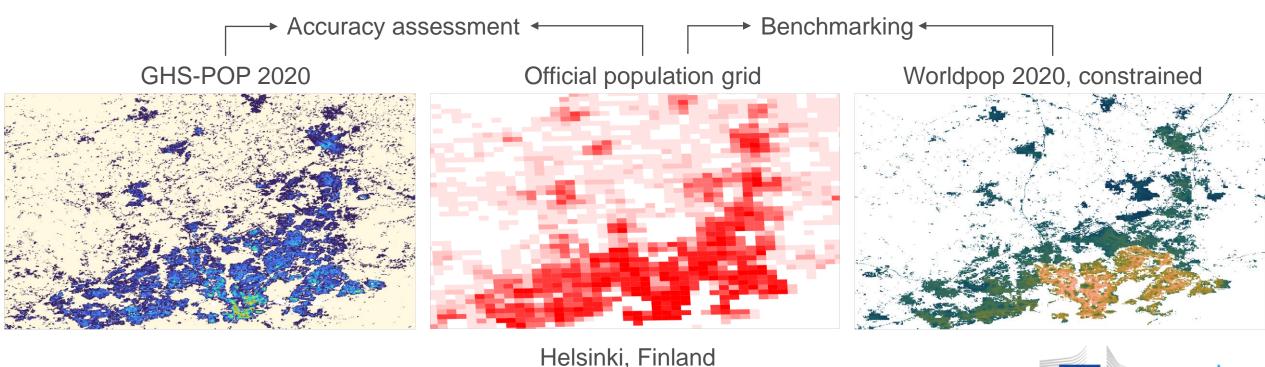

Explore content Y About the journal Y Publish with us Y

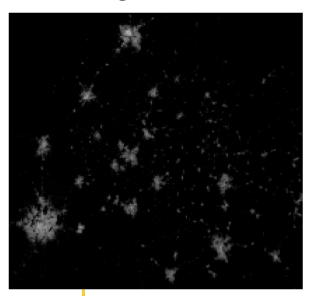
nature > scientific data > data descriptors > article

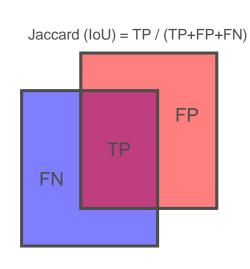
Data Descriptor | Open access | Published: 20 January 2022

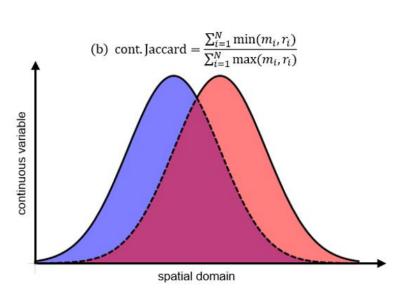

A crowdsourced global data set for validating built-up surface layers

Linda See , Ivelina Georgieva, Martina Duerauer, Thomas Kemper, Christina Corbane, Luca Maffenini, Javier Gallego, Martino Pesaresi, Flavius Sirbu, Rekib Ahmed, Kateryna Blyshchyk, Brigitte Magori, Volodymyr Blyshchyk, Oleksandr Melnyk, Roman Zadorozhniuk, Marian-Traian Mandici, Yuan-Fong Su, Ahmed Harb Rabia, Ana Pérez-Hoyos, Roman Vasylyshyn, Chandra Kant Pawe, Svitlana Bilous, Serhii B. Kovalevskyi, Sergii S. Kovalevskyi, ... Steffen Fritz


Source: See et al. 2020

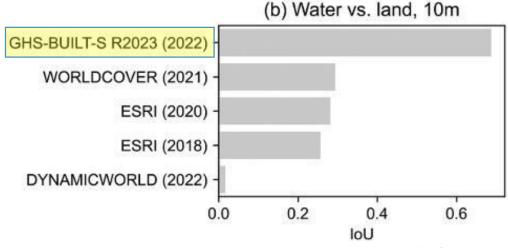

Reference data V: Authoritative gridded population counts


- First systematic cross-comparison against authoritative gridded population data
- 24 countries, 18 EU countries, plus Brazil, Ecuador, Finland, Japan, Mexico, Republic of Korea
- Agreement metric: R-accuracy, TAA (Total Allocation Accuracy percentage, 1-MAE/2; Batista e Silva et al. 2020)



Accuracy assessment of GHS-BUILT-S / -H

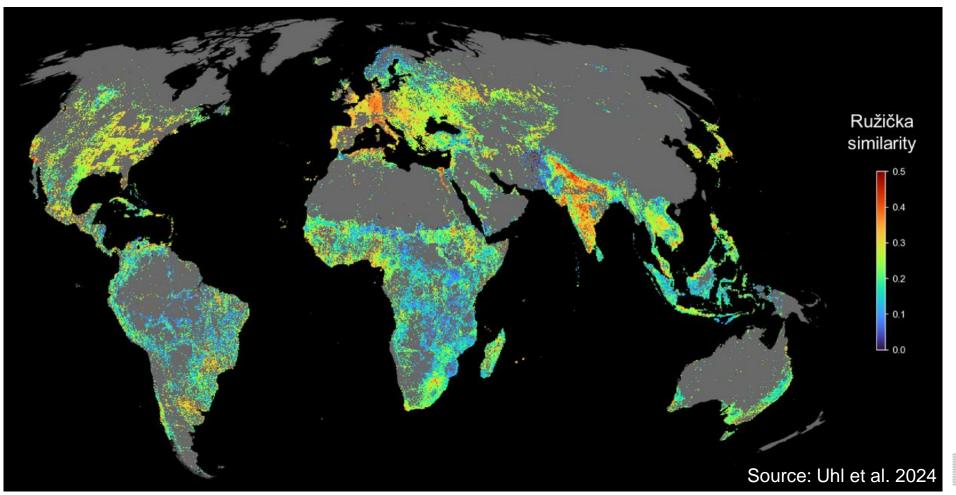
- Comparison of continuous measurements (i.e., subpixel built-up surface in sqm, average building height)
- Need for a metric to compare sparse ratio-scale measurements, without taking into account agreement in the 0-domain (not built-up)
- Mean Absolute Error (MAE) Drawback: Scale-dependent, does not allow for disentangling commission and omission errors.
- Using the continuous Jaccard index (R-accuracy; Ružička 1958, Costa 2022, Krasnodębska et al. 2024), a generalization of the Jaccard index to the continuous domain, for grid-based evaluations.



Results I: Categorical agreement at 10m resolution (reference data: visually inspected S-2 data)

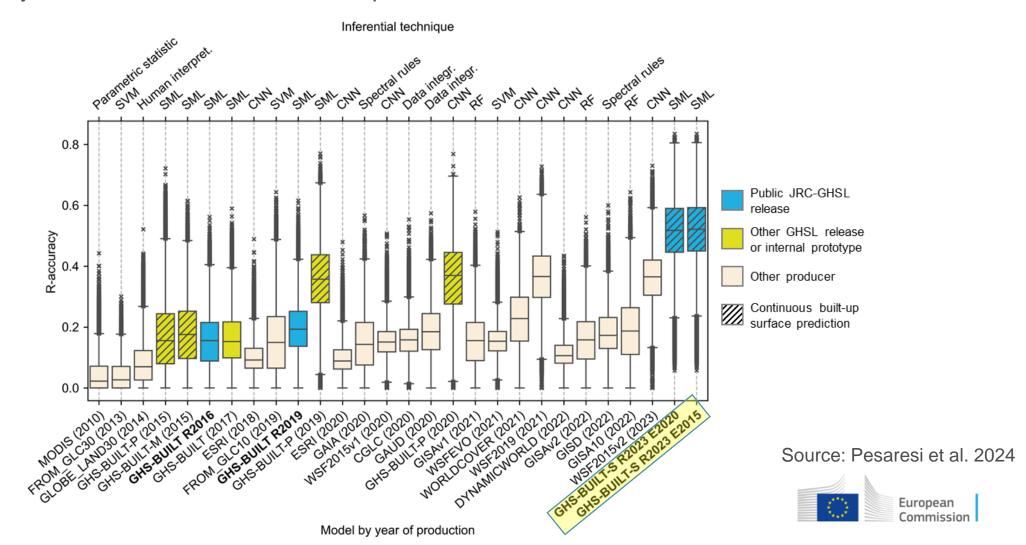
Multiclass agreement (Land, Water, Residential, Non-residential): mIoU = 0.87 built-up vs non-built-up: IoU = 0.92 Residential vs non-residential: IoU = 0.80 Water vs Land: IoU = 0.98

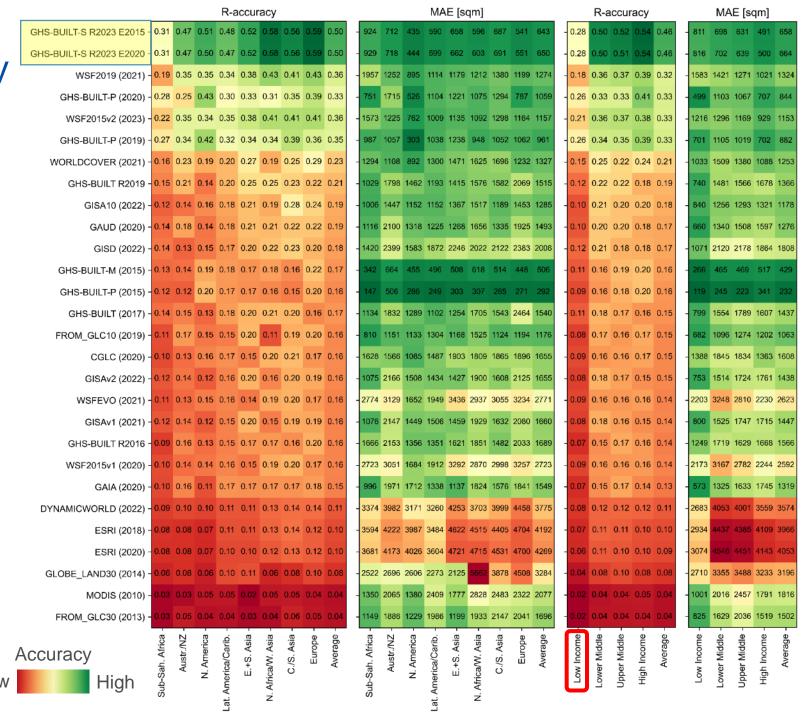
Results II: Built-up surface accuracy 2020 at 10m resolution, compared with crowd-sourced, continuous reference data


Table 11. Correlation of total built-up surface measured by global models with crowd-sourced reference data (See et al. 2022). The table is sorted by descending Spearman rank correlation coefficient.

No	Model	Spearman	No	Model	Spearman
1	GHS-BUILT-S R2023 E2018	0.8565	14	GHS-BUILT- <i>P</i> (2020)	0.7091
2	WSF2019 (2021)	0.8502	15	GHS-BUILT R2019	0.6725
3	WSF2015v2 (2023)	0.8251	16	GAUD (2020)	0.6566
4	DYNAMICWORLD (2022)	0.7989	17	GHS-BUILT (2017)	0.6427
5	ESRI (2020)	0.7811	18	GISAv2 (2022)	0.6316
6	ESRI (2018)	0.7778	19	GISAv1 (2021)	0.6229
7	WSF2015v1 (2020)	0.7574	20	GAIA (2020)	0.6128
8	WSFEVO (2021)	0.7573	21	FROM_GLC10 (2019)	0.5923
9	GHS-BUILT- <i>P</i> (2019)	0.7561	22	GHS-BUILT R2016	0.5875
10	WORLDCOVER (2021)	0.7544	23	MODIS (2010)	0.3712
11	CGLC (2020)	0.7177	24	FROM_GLC30 (2013)	0.3474
12	GISD (2022)	0.7123	25	GLOBE_LAND30 (2014)	0.3103
13	GISA10 (2022)	0.7110			

Results III: Built-up surface accuracy 2020 at 100m resolution Reference data: vector building footprint data

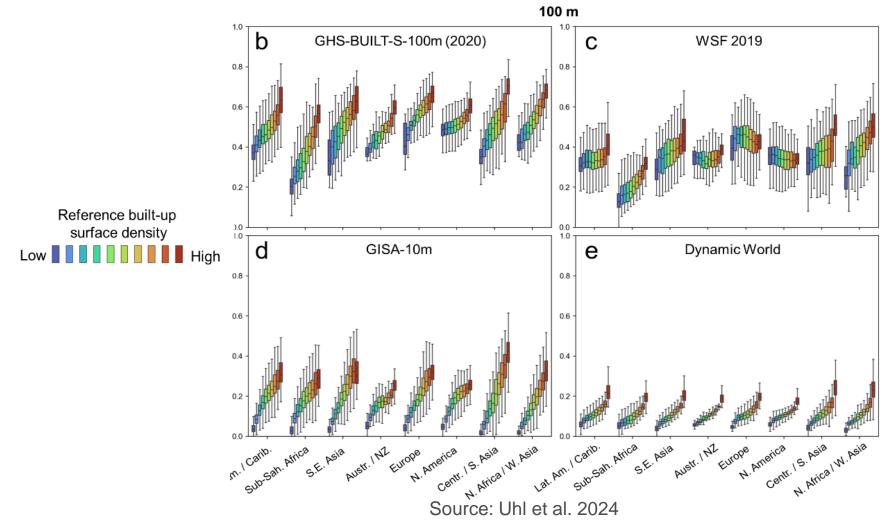

 R-accuracy of GHS-BUILT-S at 100m resolution (contemporary case), distributions of 25x25km tile-level estimates


Results III: Built-up surface accuracy 2020 at 100m resolution

- R-accuracy at 100m resolution (contemporary case), distributions of 25x25km tile-level estimates
- Accuracy increase over time across data products

Results III: Built-up surface 2020 accuracy at 100m resolution stratified by region and income class

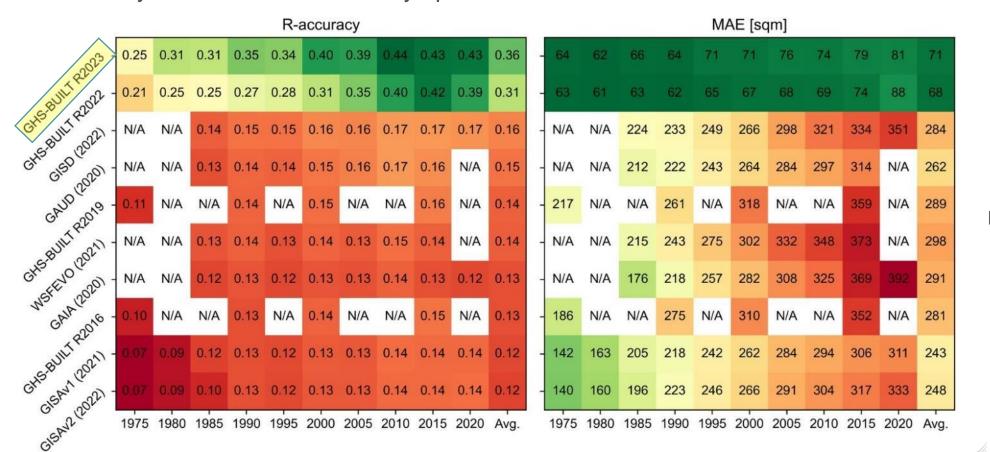
- GHSL R2023A ranks best in most cases
- Ranking is consistent across most strata (income groups, world regions)
- Income bias: lower income lower accuracy
- MAE metric shows trends largely consistent with R-accuracy

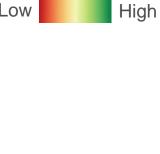


Source: Decercei e

Source: Pesaresi et al. 2024

Results III – Built-up surface 2020 accuracy at 100m resolution along a rural-urban gradient


 Accuracy increase from rural to urban settings, consistent across world regions, and for most other datasets.



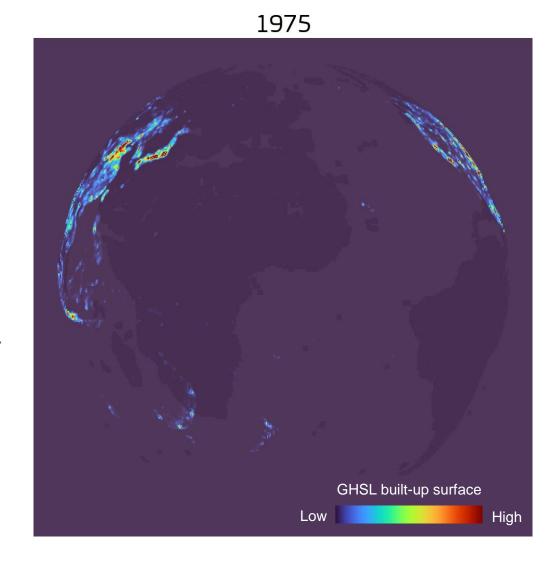
Results IV: Accuracy of multi-temporal built-up surface estimates (1975-2020)

- For continuous built-up surface estimation at 100m resolution, GHS-BUILT-S ranks highest compared to existing multitemporal, global settlement-related datasets
- Accuracy decreases towards early epochs.

Accuracy

Results V: Accuracy of gridded population estimates, 100m resolution, 1995-2020

Table 16. R-accuracy and %TAA (in brackets) for each population grid (WPC: WorldPop UN adjusted constrained; WPU: WorldPop UN adjusted unconstrained) for each reference year available (census grids). Aggregated and RMSE columns refer to data for all available epochs aggregated.


	1995	2000	2005	2010	2015	2020	Aggregated	RMSE
GHS-POP R2023	0.71 (83%)	0.69 (82%)	0.73 (85%)	0.73 (84%)	0.74 (85%)	0.68 (81%)	0.71 (83%)	45.4
GHS-POP R2022	0.69 (82%)	0.65 (79%)	0.70 (83%)	0.69 (82%)	0.69 (82%)	0.61 (76%)	0.66 (80%)	55.4
GHS-POP R2019	-	0.61 (76%)	-	-	0.64 (78%)	-	0.62 (77%)	590.9
WorldPop (constrained)	-	-	-	-	-	0.59 (74%)	0.59 (74%)	205.6
WorldPop (unconstrained)	-	0.53 (70%)	0.58 (73%)	0.57 (72%)	0.61 (76%)	0.55 (71%)	0.56 (72%)	62.7

- GHS-POP achieves higher agreement than WorldPop when compared to authoritative gridded population estimates across 24 countries, in all evaluated epochs (1995-2020).
- Accuracy estimates stable over time.

Conclusions

- We gathered large amounts of independent reference data that were not available / not used during production of the GHSL R2023A.
- We carried out an accuracy assessment of the measured and modelled data components of the GHSL R2023A data ecosystem, and cross-compared to related, global remotesensing based datasets.
- Empirical findings suggest that multi-temporal GHSL R2023A built-up surface and resident population estimates are the most accurate global data sources for continuous variable estimation enumerated at 100m resolution.
- E.g., accurate SDG indicator 11.3.1 estimation (land use efficiency).
- Our analyses aim to contribute to a more informed, uncertainty-aware usage of global settlement data and beyond.

References

- Batista e Silva, Filipe, Sérgio Freire, Marcello Schiavina, Konštantín Rosina, Mario Alberto Marín-Herrera, Lukasz Ziemba, Massimo Craglia, Eric Koomen, and Carlo Lavalle. "Uncovering temporal changes in Europe's population density patterns using a data fusion approach." Nature communications 11, no. 1 (2020): 4631.
- Costa, L. da F., 2022. On similarity. Physica A: Statistical Mechanics and its Applications 599, 127456. https://doi.org/10.1016/j.physa.2022.127456
- EUBUCCO building dataset: https://eubucco.com/
- > Google Open Buildings dataset: https://sites.research.google/open-buildings/
- Krasnodębska, Katarzyna, Wojciech Goch, Johannes H. Uhl, Judith A. Verstegen, and Martino Pesaresi. 2024. "Advancing Precision, Recall, F-Score, and Jaccard Index: An Approach for Continuous Gridded Data." Recall, F-Score, and Jaccard Index: An Approach for Continuous Gridded Data, https://doi.org/10.2139/ssrn.4865121
- Microsoft building footprint data: https://github.com/microsoft/GlobalMLBuildingFootprints
- MTBF-33 building dataset: https://data.mendeley.com/datasets/w33vbvjtdy/1, https://doi.org/10.1016/j.dib.2022.108369
- Pesaresi, M., Schiavina, M., Politis, P., Freire, S., Krasnodębska, K., Uhl, J.H., Carioli, A., Corbane, C., Dijkstra, L., Florio, P. and Friedrich, H.K., 2024. Advances on the global human settlement layer by joint assessment of earth observation and population survey data. International Journal of Digital Earth, 17(1), p.2390454.
- > Ružička, M. 1958. Anwendung Mathematisch-Statistischer Methoden in Der Geobotanik (Synthetische Bearbeitung von Aufnahmen). Biologia, Bratislava 13:647–661.
- > See, Linda, Ivelina Georgieva, Martina Duerauer, Thomas Kemper, Christina Corbane, Luca Maffenini, Javier Gallego et al. "A crowdsourced global data set for validating built-up surface layers." Scientific data 9, no. 1 (2022): 13.
- ▶ Uhl, J.H., Pesaresi, M., Politis, P., Goch, K., Melchiorri, M. and Kemper, T., 2024, July. Towards a Quasi-Global Accuracy Assessment of Built-Up Surface Estimates Derived From Sentinel-2 Multispectral Data. In IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium (pp. 4697-4700). IEEE.
- ▶ Uhl, J.H., and S. Leyk. "MTBF-33: A multi-temporal building footprint dataset for 33 counties in the United States (1900–2015)." Data in Brief 43 (2022): 108369.

Thank you for your attention

© European Union, 2024

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

Global Human Settlement Layer

https://human-settlement.emergency.copernicus.eu/ jrc-ghsl@ec.europa.eu

EU Science Hub

<u>Joint-research-centre.ec.europa.eu</u>

